Relationship Mining
Sequential Pattern Mining
Association Rule Mining

- Try to automatically find if-then rules within the data set
Sequential Pattern Mining

- Try to automatically find *temporal* patterns within the data set
ARM Example

- If person X buys diapers,
- Person X buys beer
- Purchases occur at the same time
SPM Example

- If person X takes Intro Stats now,
- Person X takes Advanced Data Mining in a later semester

- Conclusion: recommend Advanced Data Mining to students who have previously taken Intro Stats

- Doesn’t matter if they take other courses in between
Learners in virtual environments have different sequences of behavior depending on their degree of self-regulated learning.

- **High self-regulated learning**: Tend to gather information and then immediately record it carefully.

- **Low self-regulated learning**: Tend to gather more information without pausing to record it carefully.

(Sabourin, Mott, & Lester, 2011)
Different Constraints than ARM

- If-then elements do not need to occur in the same data point

- Instead
 - If-then elements should involve the same student (or other organizing variable, like teacher or school)
 - If elements can be within a certain time window of each other
 - Then element time should be within a certain window after if times
Sequential Pattern Mining

- Find all subsequences in data with high support

- Support calculated as number of sequences that contain subsequence, divided by total number of sequences
GSP (Generalized Sequential Pattern)

- Classic Algorithm for SPM
- (Srikant & Agrawal, 1996)
Data pre-processing

- Data transformed from individual actions to sequences by user

- Bob: {GAMING and BORED, OFF-TASK and BORED, ON-TASK and BORED, GAMING and BORED, GAMING and FRUSTRATED, ON-TASK and BORED}
Data pre-processing

- In some cases, time also included

- Bob: \{GAMING and BORED 5:05:20, OFF-TASK and BORED 5:05:40, ON-TASK and BORED 5:06:00, GAMING and BORED 5:06:20, GAMING and FRUSTRATED 5:06:40, ON-TASK and BORED 5:07:00\}
Algorithm

- Take the whole set of sequences of length 1
 - May include “ANDed” combinations at same time
- Find which sequences of length 1 have support over pre-chosen threshold
- Compose potential sequences out of pairs of sequences of length 1 with acceptable support
- Find which sequences of length 2 have support over pre-chosen threshold
- Compose potential sequences out of triplets of sequences of length 1 and 2 with acceptable support
- Continue until no new sequences found
Let’s execute GPS algorithm

- With min support = 20%

- Chuck: a, abc, ac, de, cef
- Darlene: af, ab, acd, dabc, ef
- Egoberto: aef, ab, aceh, d, ae
- Francine: a, bc, acf, d, abeg
Let’s execute GPS algorithm

- With min support = 20%
- Chuck: a, abc, ac, de, cef
- Darlene: af, ab, acd, dabc, ef
- Egoberto: aef, ab, aceh, d, ae
- Francine: a, bc, acf, d, abeg

a, b, c, d, e, f
Let’s execute GPS algorithm

- With min support = 20%
- Chuck: a, abc, ac, de, cef
- Darlene: af, ab, acd, dabc, ef
- Egoberto: aef, ab, aceh, d, ae
- Francine: a, bc, acf, d, abeg

a, b, c, d, e, f, ac
Let's execute GPS algorithm

- With min support = 20%

- Chuck: a, abc, ac, de, cef
- Darlene: af, ab, acd, dabc, ef
- Egoberto: aef, ab, aceh, d, ae
- Francine: a, bc, acf, d, abeg

a, b, c, d, e, f, ac
Let’s execute GPS algorithm

- With min support = 20%

- Chuck: a, abc, ac, de, cef
- Darlene: af, ab, acd, dabc, ef
- Egoberto: aef, ab, aceh, d, ae
- Francine: a, bc, acf, d, abeg

a, b, c, d, e, f, ac
Let’s execute GPS algorithm

- With min support = 20%
- Chuck: a, abc, ac, de, cef
- Darlene: af, ab, acd, dabc, ef
- Egoberto: aef, ab, aceh, d, ae
- Francine: a, bc, acf, d, abeg

a, b, c, d, e, f, ac
Let’s execute GPS algorithm

- With min support = 20%

- Chuck: a, abc, ac, de, cef
- Darlene: af, ab, acd, dabc, ef
- Egoberto: aef, ab, aceh, d, ae
- Francine: a, bc, acf, d, abeg

a, b, c, d, e, f, ac
Let’s execute GPS algorithm

- With min support = 20%
 - Chuck: a, abc, ac, de, cef
 - Darlene: af, ab, acd, dabc, ef
 - Egoberto: aef, ab, aceh, d, ae
 - Francine: a, bc, acf, d, abeg

a, b, c, d, e, f, ac
Let’s execute GPS algorithm

- With min support = 20%

- Chuck: a, abc, ac, de, cef
- Darlene: af, ab, acd, dabc, ef
- Egoberto: aef, ab, aceh, d, ae
- Francine: a, bc, acf, d, abeg

a, b, c, d, e, f, ac
Let’s execute GPS algorithm

- With min support = 20%

- Chuck: a, abc, ac, de, cef
- Darlene: af, ab, acd, dabc, ef
- Egoberto: aef, ab, aceh, d, ae
- Francine: a, bc, acf, d, abeg

a, b, c, d, e, f, ac
Let’s execute GPS algorithm

- With min support = 20%

- Chuck: a, abc, ac, de, cef
- Darlene: af, ab, acd, dabc, ef
- Egoberto: aef, ab, aceh, d, ae
- Francine: a, bc, acf, d, abeg

a, b, c, d, e, f, ac
Let’s execute GPS algorithm

- With min support = 20%

- Chuck: a, abc, ac, de, cef
- Darlene: af, ab, acd, dabc, ef
- Egoberto: aef, ab, aceh, d, ae
- Francine: a, bc, acf, d, abeg

a, b, c, d, e, f, ac
Let’s execute GPS algorithm

- With min support = 20%
 - Chuck: a, abc, ac, de, cef
 - Darlene: af, ab, acd, dabc, ef
 - Egoberto: aef, ab, aceh, d, ae
 - Francine: a, bc, acf, d, abeg

a, b, c, d, e, f, ac
Let’s execute GPS algorithm

- With min support = 20%

- Chuck: a, abc, ac, de, cef
- Darlene: af, ab, acd, dabc, ef
- Egoberto: aef, ab, aceh, d, ae
- Francine: a, bc, acf, d, abeg

a, b, c, d, e, f, ac
Let’s execute GPS algorithm

- With min support = 20%

- Chuck: a, abc, ac, de, cef
- Darlene: af, ab, acd, dabc, ef
- Egoberto: aef, ab, aeh, d, ae
- Francine: a, bc, acf, d, abeg

a, b, c, d, e, f, ac
Let’s execute GPS algorithm

- With min support = 20%

- Chuck: a, abc, ac, de, cef
- Darlene: af, ab, acd, dabc, ef
- Egoberto: aef, ab, aceh, d, ae
- Francine: a, bc, acf, d, abeg

a, b, c, d, e, f, ac
Let’s execute GPS algorithm

- With min support = 20%
- Chuck: a, abc, ac, de, cef
- Darlene: af, ab, acd, dabc, ef
- Egoberto: aef, ab, aceh, d, ae
- Francine: a, bc, acf, d, abeg

a, b, c, d, e, f, ac
Let’s execute GPS algorithm

- With min support = 20%

- Chuck: a, abc, ac, de, cef
- Darlene: af, ab, acd, dabc, ef
- Egoberto: aef, ab, aceh, d, ae
- Francine: a, bc, acf, d, abeg

a, b, c, d, e, f, ac(14/40=35%)
Let’s execute GPS algorithm

- With min support = 20%

- Chuck: a, abc, ac, de, cef
- Darlene: af, ab, acd, dabc, ef
- Egoberto: aef, ab, aceh, d, ae
- Francine: a, bc, acf, d, abeg

a, b, c, d, e, f, ac, ad, ae
Let’s execute GPS algorithm

- With min support = 20%

- Chuck: a, abc, ac, de, cef
- Darlene: af, ab, acd, dabc, ef
- Egoberto: aef, ab, aceh, d, ae
- Francine: a, bc, acf, d, abeg

a, b, c, d, e, f, ac, ad, ae, aad,
Let’s execute GPS algorithm

- With min support = 20%
 - Chuck: a, abc, ac, de, cef
 - Darlene: af, ab, acd, dabc, ef
 - Egoberto: aef, ab, aceh, d, ae
 - Francine: a, bc, acf, d, abeg

a, b, c, d, e, f, ac, ad, ae, aad
Let’s execute GPS algorithm

- With min support = 20%

- Chuck: a, abc, ac, de, cef
- Darlene: af, ab, acd, dabc, ef
- Egoberto: aef, ab, aceh, d, ae
- Francine: a, bc, acf, d, abeg

a, b, c, d, e, f, ac, ad, ae, aad
Let’s execute GPS algorithm

- With min support = 20%
- Chuck: a, abc, ac, de, cef
- Darlene: af, ab, acd, dabc, ef
- Egoberto: aef, ab, aceh, d, ae
- Francine: a, bc, acf, d, abeg

a, b, c, d, e, f, ac, ad, ae, aad
Let’s execute GPS algorithm

- With min support = 20%

- Chuck: a, abc, ac, de, cef
- Darlene: af, ab, acd, dabc, ef
- Egoberto: aef, ab, aceh, d, ae
- Francine: a, bc, acf, d, abeg

a, b, c, d, e, f, ac, ad, ae, aad
Let’s execute GPS algorithm

- With min support = 20%

- Chuck: a, abc, ac, de, cef
- Darlene: af, ab, acd, dabc, ef
- Egoberto: aef, ab, aceh, d, ae
- Francine: a, bc, acf, d, abeg

a, b, c, d, e, f, ac, ad, ae, aad
Let’s execute GPS algorithm

- With min support = 20%

- Chuck: a, abc, ac, de, cef
- Darlene: af, ab, acd, dabc, ef
- Egoberto: aef, ab, aceh, d, ae
- Francine: a, bc, acf, d, abeg

a, b, c, d, e, f, ac, ad, ae, aad
Let’s execute GPS algorithm

- With min support = 20%

- Chuck: a, abc, ac, de, cef
- Darlene: af, ab, acd, dabc, ef
- Egoberto: aef, ab, aceh, d, ae
- Francine: a, bc, acf, d, abeg

a, b, c, d, e, f, ac, ad, ae, aad
Let’s execute GPS algorithm

- With min support = 20%
- Chuck: a, abc, ac, de, cef
- Darlene: af, ab, acd, dabc, ef
- Egoberto: aef, ab, aceh, d, ae
- Francine: a, bc, acf, d, abeg

a, b, c, d, e, f, ac, ad, ae, aad, aae, ade
Let’s execute GPS algorithm

- From
 - ac, ad, ae, aad, aae, ade

- To
 - a \rightarrow c, a \rightarrow d, a \rightarrow e, a \rightarrow ad, a \rightarrow ae, ad \rightarrow e
Other algorithms

- Free-Span
- Prefix-Span

- Select sub-sets of data to search within
- Faster, but same basic idea as in GPS
Differential Sequence Mining (Kinnebrew et al., 2013)

- Compares the support for sequential patterns between two groups

- Such as high-performing and low-performing students

- To find the patterns that are much more common in one group than the other
Process Mining

- Related algorithm

- Rather than just finding small, local patterns

- Tries to find overarching processes that occur over the course of a set of events, or tries to find discrepancies in approved processes

 - For example, do students’ self-regulatory processes over time match theoretical models? (Bannert et al., 2014)
Next lecture

- Network Analysis