Week 7 Video 1

Clustering
Clustering

- A type of Structure Discovery algorithm

- This type of method is also referred to as Dimensionality Reduction, based on a common application
Clustering

- You have a large number of data points
- You want to find what structure there is among the data points
- You don’t know anything a priori about the structure
- Clustering tries to find data points that “group together”
Trivial Example

- Let’s say your data has two variables
 - Probability the student knows the skill from BKT (Pknow)
 - Unitized Time

- Note: clustering works for (and is effective in) large feature spaces
k-Means Clustering Algorithm
Not the only clustering algorithm

- Just the simplest

- We’ll discuss fancier ones as the week goes on
How did we get these clusters?

- First we decided how many clusters we wanted, 5
 - How did we do that? More on this in the next lecture

- We picked starting values for the “centroids” of the clusters…
 - Usually chosen randomly
 - Sometimes there are good reasons to start with specific initial values…
Then...

- We classify every point as to which centroid it’s closest to
 - This defines the clusters
 - Typically visualized as a voronoi diagram
Then...

- We re-fit the centroids as the center of the points in each cluster
Then...

- Repeat the process until the centroids stop moving
- “Convergence”
Note that there are some outliers
What if we start with these points?
Not very good clusters
What happens?

- What happens if your starting points are in strange places?

- Not trivial to avoid, considering the full span of possible data distributions
One Solution

- Run several times, involving different starting points

Exercises

- Take the following examples
- (The slides will be available in course materials so you can work through them)
- And execute k-means for them
- Do this by hand...
- Focus on getting the concept rather than the exact right answer...
- (Solutions are by hand rather than actually using code, and are not guaranteed to be perfect)
Exercise 7-1-1
Pause Here with In-Video Quiz

- Do this yourself if you want to

- Only quiz option: go ahead
Solution Step 1
Solution Step 2
Solution Step 3
Solution Step 4
Solution Step 5
No points switched -- convergence
Notes

- K-Means did pretty reasonable here
Exercise 7-1-2
Pause Here with In-Video Quiz

- Do this yourself if you want to

- Only quiz option: go ahead
Solution Step 1
Solution Step 2
Solution Step 4
The three clusters in the same data lump might move around for a little while.

But really, what we have here is one cluster and two outliers...

k should be 3 rather than 5.

See next lecture to learn more.
Exercise 7-1-3
Pause Here with In-Video Quiz

- Do this yourself if you want to

- Only quiz option: go ahead
Solution

(time, pknow)
The bottom-right cluster is actually empty!

There was never a point where that centroid was actually closest to any point.
Pause Here with In-Video Quiz

- Do this yourself if you want to
- Only quiz option: go ahead
Solution Step 1
Solution Step 2
Solution Step 5

![Graph showing data points on a scatter plot with axes labeled 'time' and 'pknow'.]
Approximate Solution
Kind of a weird outcome

By unlucky initial positioning

- One data lump at left became three clusters
- Two clearly distinct data lumps at right became one cluster
Pause Here with In-Video Quiz

- Do this yourself if you want to
- Only quiz option: go ahead
Exercise 7-1-5
That actually kind of came out ok…
As you can see

- A lot depends on initial positioning
- And on the number of clusters

- How do you pick which final position and number of clusters to go with?
Next lecture

- Clustering – Validation and Selection of k