
Evaluating Gaming Detector Model Robustness Over Time 
Nathan Levin1, Ryan S. Baker1, Nidhi Nasiar1, Stephen Fancsali2, Stephen Hutt1  

1University of Pennsylvania 
2Carnegie Learning, Inc. 
rybaker@upenn.edu 

ABSTRACT 
Research into "gaming the system" behavior in intelligent tutoring 
systems (ITS) has been around for almost two decades, and detec-
tion has been developed for many ITSs.  Machine learning models 
can detect this behavior in both real-time and in historical data. 
However, intelligent tutoring system designs often change over 
time, in terms of the design of the student interface, assessment 
models, and data collection log schemas. Can gaming detectors still 
be trusted, a decade or more after they are developed? In this re-
search, we evaluate the robustness/degradation of gaming detectors 
when trained on older data logs and evaluated on current data logs. 
We demonstrate that some machine learning models developed us-
ing past data are still able to predict gaming behavior from student 
data collected 16 years later, but that there is considerable variance 
in how well different algorithms perform over time. We demon-
strate that a classic decision tree algorithm maintained its 
performance while more contemporary algorithms struggled to 
transfer to new data, even though they exhibited better performance 
on unseen students in both New and Old data sets by themselves. 
Examining the feature importance values provides some explana-
tion for the differences in performance between models, and offers 
some insight into how we might safeguard against detector rot over 
time. 

Keywords 
Intelligent Tutoring Systems, Gaming the System, Detector Rot 

1. INTRODUCTION 
Adaptive systems like intelligent tutoring systems (ITSs) depend 
on inferential models to understand and respond to individual stu-
dents. Some of these systems and models have now been applied to 
modeling knowledge and behavior for decades [7]. For instance, 
Bayesian Knowledge Tracing (BKT) models have been used in 
ITSs for almost 30 years [11]. Even the use of more complex ma-
chine-learned models now has an extensive history; for example, 
gaming the system models which predict when students are at-
tempting to find ways other than learning to advance through the 
system [2, 5, 26], have been in use for 18 years.  
Gaming the system models are used for several purposes, including 
evaluating the quality of content [13, 24], research on the longitu-
dinal impacts of disengagement [1, 34], and automated intervention 
[3]. Even as ITSs have become more adaptive and user interfaces 
have become more engaging, students have continued to find ways 
to disengage from these systems [38]. 
While BKT models are easily and frequently refit in industrial prac-
tice, models of constructs like gaming the system require 

supplementary data collection beyond the standard logged data 
stream, in order to create new training labels. As a result, they are 
expensive to fit and are not refit often. Is this a dangerous practice?  
An analogy can be made to code rot, a phenomenon in computer 
software where over time systems degrade in performance due to 
their reliance on aging library dependencies, hardware updates, and 
breakdown in the structural integrity of design patterns [18]. Mod-
els developed through machine learning and artificial intelligence 
(AI) may suffer a similar fate, “detector rot”, where a model stops 
functioning as expected over time. When a piece of code simply 
fails to work, it is obvious, but there may be less obvious failure 
modes for machine learned models. Machine Learning packages 
change in their functionality over time and become obsolete; just 
because a model is still runnable does not necessarily imply that it 
is functioning in the same way. This problem has been noted in 
machine learning research in general, where many past research re-
sults can no longer be reproduced [17]. 
Furthermore, even if a model is functioning the same way as it did 
a decade ago, that does not mean that it has not experienced a form 
of decay. There is more to decay in a model over time than just 
reproducibility. Take the Cognitive Tutor [31], the system which 
many of the first models detecting gaming were developed for [2, 
6]. The design and interface of Cognitive Tutors have gone through 
significant changes over the years (and the system has been re-
branded MATHia). The changes over time involve both cosmetic 
changes and changes in pedagogical strategies and content. We 
elaborate further on these changes in a dedicated section below. 
Students, teachers, and learning contexts also change over time. In 
1995, Janet Schofield reported many students in Pittsburgh skip-
ping lunch and staying after school to use ITSs [35], a behavior not 
commonly reported in U.S. classrooms today. ITSs are much more 
prevalent in classrooms than even 10 or 15 years ago, students and 
teachers are more familiar with instructional technology, and stu-
dents use technology at-home more often compared to an earlier 
focus primarily on classroom use [16]. Students today are also 
much more likely to be comfortable quickly locating information 
on the internet and may expect this same immediacy in their inter-
action with ITSs [36]. As such, detector rot may be as much a 
problem of generalizability as reproducibility -- the model might 
have been completely valid in 2008, and may even still function 
exactly the same way, but may not be valid anymore in 2021. As 
such, we can and should ask: will models trained on older data (in 
this case, 2005) maintain accuracy when tested on current data 
(2021)? Beyond this, has student gaming behavior changed over 
the last 15 years as indicated by different features becoming 
more/less important when detecting gaming behavior?  
This question seems on its surface to be a question about algorithm 
effectiveness today, based on historical models. But it is also im-
portant to ask, do we have any reason to believe our models will 
work tomorrow? One challenge in answering this question is that 
the algorithms we use today are different than those used fifteen 
years ago. Significant advances have occurred in machine learning 
algorithms over the last 16 years [20]. We can have somewhat more 
confidence in the potential of today’s algorithms to work tomorrow, 

 

 

 



by conducting an anachronistic form of analysis -- applying current 
algorithms to older data and seeing how well they work on contem-
porary data. One class of algorithm that has seen recent success is 
gradient boosted descent trees. The eXtreme gradient boosting 
package (xgboost) [10] has met and surpassed state of the art results 
across a variety of machine learning applications including the de-
tection of gaming the system [30]. Contemporary machine learning 
algorithms generally achieve better predictive performance than 
older algorithms, as the proceedings of this conference over the last 
few years shows. Will contemporary machine learning models also 
be more robust over time than older algorithms?  
To answer these questions, this paper compares the functioning of 
gaming detectors over time, using data sets from 2005 and 2021. 
We will evaluate the effectiveness of a model trained on data from 
2005 and tested on data from 2021. We will also compare which 
features are most important within models trained on the Old data 
to which features are most important in models trained on the New 
data, to see whether the behaviors that are predictive remain con-
sistent over time. Additionally, we will then apply a variety of 
machine learning models including both classic algorithms and 
contemporary algorithms, to determine if each of these types of al-
gorithms is robust to changes over time. 
This paper will begin by discussing how the system being studied 
(MATHia/Cognitive Tutor) has changed over time, and how these 
changes may impact the manifestation of gaming behavior. In the 
methods section we describe the process of obtaining training la-
bels for newer data, the feature set implementation, and the 
modeling process. Next we present results, comparing models' per-
formance over time and dig deeper into the most important features 
of the most effective models. We discuss potential implications for 
practice in the use of detectors in real-world learning systems, and 
finally conclude with a synthesis of our findings and potential ave-
nues for future research. 

1.1 Mathia 
We studied the issue of detector rot using log data generated by 
Carnegie Learning’s MATHia (formerly known as Cognitive Tutor 
– [30]) ITS at two time periods separated by approximately 16 years 
(2005 and 2021). Throughout their histories, MATHia/Cognitive 
Tutor has been the software component of a typically blended core 
curricula for middle school and high school mathematics. In 
blended, core implementations, Carnegie Learning recommends a 
mix of collaborative classroom work guided by its paper worktexts 
(60% of instructional time) as well as individual student work (40% 
of instructional time) in the ITS. MATHia/Cognitive Tutor presents 
students with complex, multi-step math problems mapped to fine-
grained skills (often also referred to as knowledge compo-
nents/KCs; [23]. Within each problem, the ITS provides context-
sensitive help and feedback, sensitive, for example, to particular 
solution strategies a student might adopt (e.g., surfacing feedback 
that an incorrect answer reflects an inappropriate problem-solving 
strategy).Implementing mastery learning [33], the ITS tracks stu-
dents’ progress to mastery of KCs using an implementation 
of  Bayesian Knowledge Tracing (BKT; [11]) and presents prob-
lems to students until they demonstrate mastery of all KCs 
associated with each topical lesson or “workspace.” When a student 
has mastered all KCs in a workspace, they are moved on to the next 
workspace in an assigned sequence of workspaces, typically corre-
sponding to a course like Algebra I or Grade 6 Math. Within 
MATHia, the tutor judges a KC as mastered when the student 
reaches a 0.95 probability estimate for having mastered that KC.  

Timestamped log data track student actions (e.g., making a prob-
lem-solving attempt, requesting a hint) at each step of problems 
within each workspace, as well as feedback from the ITS (e.g., a 
correct response or that an error triggers just-in-time feedback be-
cause it reflects a common misconception, etc.). Data also track the 
input values provided by students, the KC to which a particular 
problem-step is mapped, and BKT’s ongoing estimation of a stu-
dent’s probability of having mastered the KC.  

1.2 Mathia Changes Between 2005 and 2021 
In general, the Cognitive Tutor Java application of 2005 was more 
compartmentalized (with multiple windows displaying problem-
solving elements) than the more contemporary web-based delivery 
of 2021. One prominent difference in the layout of the user inter-
face concerns the extent to which the “skillometer” for visualizing 
student progress to skill mastery has evolved from a display that 
was “expanded” by default (displaying skill names and progress to 
mastery) to a more visually compact representation (circles that 
“fill” as students make skill progress) that can be expanded by the 
student to see their progress in more detail. 
Changes have more recently been implemented in how BKT tracks 
student progress to skill mastery, especially related to how the stu-
dent’s use of hints impacts their knowledge estimates. First, hints 
are now delivered in MATHia with a delay between “hint levels.” 
After the student requests an initial hint, which typically re-states 
the goal for the current problem-solving step, there is a delay of a 
few seconds before the student can request another hint, which pro-
vides detail on how to accomplish the goal. This initial delay and 
short delays for each additional hint are designed to encourage re-
flection on the help requested and discourage students from rapidly 
seeking the “bottom out” hint, which provides the answer [2].In the 
Cognitive Tutor circa 2005 (and for many subsequent years), a stu-
dent’s request for a hint on a first attempt at a problem-solving step 
was treated as an incorrect response, resulting in a decrease in the 
ITS’s estimate of skill mastery. The 2021 version of MATHia only 
treats the “bottom out” hint that presents the student with the an-
swer as an incorrect attempt. Correct attempts after an initial hint 
are now credited (i.e., skill mastery estimates increase) like imme-
diate correct attempts, and correct attempts after mid-level hints 
now leave the skill mastery estimate unchanged. In addition, MA-
THia’s BKT parameter estimates for each skill (used to determine 
the models’ responsiveness to correct and incorrect answers) are 
now frequently set based on data-driven estimation techniques [32, 
39] as opposed to mostly being set according to expert judgment in 
earlier Cognitive Tutor versions.  

2. METHODS 
2.1 Labeling Gaming Behavior 
We obtained the data set used to develop the gaming detector in [6]. 
This original detector was a J48 (C4.5) decision tree classifier [29] 
built using training labels developed using text replays. Text re-
plays allow coders to directly label “clips” (segments of log data), 
presented as a sequence of actions and their context [4]. Text re-
plays have been used in a range of projects as a fast and accurate 
method to label a range of types of student behavior for classifier 
development within various types of learning systems [4, 6, 12, 
26].  

For the older data set [6], we obtained data from the PSLC 
DataShop [22], data set “Algebra I 2005-2006 (3 schools)”, includ-
ing both training labels derived using text replays and partially-
distilled log data. 18,737 training labels were included in that data 
set.  



The New data set was obtained directly from the Mathia team (this 
data set is not currently on DataShop, due to government-agency-
level contractual restrictions on data sharing). We conducted an 
identical text replay approach to [6], obtaining the original text re-
play software from the first author of that earlier work. We used a 
textual sequence of student activity of a duration of 20 seconds or 
8 actions (whichever occurred first) from MATHia’s log data as a 
clip for labeling. Every clip contained the student ID, timestamp of 
each action (in relation to the first action in clip), the problem name 
and step, student’s input, relevant knowledge/skill production and 
system estimate, and the outcome as assessed by system (correct, a 
misconception (bug), wrong answer, a request for hint (initial or a 
deeper level). This set of clips was then coded for gaming the sys-
tem behavior.  
“Gaming the system” behavior was defined as the learner misusing 
the system’s help and feedback to get correct answers and advance 
in their trajectory within the ITS [6]. A clip was labeled as gaming 
the system when a learner asked for hints in quick and repeated 
successions until the system revealed the answer, or systematically 
input answers rapidly until they got the correct one. For example, a 
student entering a sequence like "1,2,3,4,5,6,7,8" in rapid succes-
sion would be labeled as engaging in gaming behavior. For further 
detail on the behaviors treated as gaming the system in the coding 
process, please see [27]. 

For the more recent data set, two coders (2nd & 3rd authors) ini-
tially labeled 60 text replays to establish inter-rater reliability, and 
attained a kappa of 0.62, comparable to the original data set [6], and 
over the 0.6 cut-off often treated as standard for coding ill-defined 
constructs such as disengaged behavior [25]. Subsequently, the first 
coder labeled a total of 600 clips from which 6 were removed as 
unclassifiable. Out of the 594 labels, 31 were coded as ‘gaming’, 
and the remaining 563 as ‘not gaming’. Thus, around 5% of the 
total clips were coded as gaming for this data sample, which is in 
alignment with previously observed proportions of gaming behav-
ior in ITS [6]. 

2.2 Feature Engineering 
The features developed for this research are based on the original 
research published in [6]. In order to maintain fidelity with the orig-
inal work we followed the process of creating the original features 
as closely as possible, but in order to make sure the features were 
comparable across data sets, we re-distilled the features for the orig-
inal data set. The features are described in table 1. 

All features were engineered on the full data-set of student log data, 
and then aggregated for the labeled clips. Each clip consists of a 
series of actions so the features were aggregated together to create 
a single row of data labeled as either gaming behavior or not. The 
aggregate columns created for each feature were: Count of non-null 
values, Mean, Standard Deviation, Minimum, 25th percentile, 50th 
percentile (median), 75th percentile, Maximum, Sum. In total, 17 
features were distilled at the transaction level, and each of these 17 
features was aggregated in 9 ways in the final training data. The 
final training data had 17*9 = 153 features. 

 

 

 

 

 

 

Table 1. Gaming the System Features 

Feature Name Description 

assess_COR-
RECT 

correct answer 

assess_BUG  error tracked by MATHia for just-in-time 
context-sensitive feedback (e.g., a known mis-
conception, a number as input that appears in 
the problem but is incorrect); typically  
indicates a common  
mistake that the tutor knows how to respond 
to 

assess_ERROR error not tracked for feedback, i.e. less com-
mon mistakes 

assess_INI-
TIAL_HINT 

first-level hint provided 

as-
sess_HINT_LEV
EL_CHANGE 

a "deeper" level of hint provided 

pknow The probability estimate that the student 
knows this skill based on internal Bayesian 
Knowledge  
Tracing model of the  
student's mastery of this skill 

pknow_direct [8] If the current action is the student’s first at-
tempt on this problem step, then pknow-direct 
is equal to pknow, but if the student has al-
ready made an attempt on this problem step, 
then pknow-direct is -1. 

duration How many seconds the action took 
duration_sd duration expressed in standard deviations 

from the mean time taken for this problem 
step across all problems 

duration 
sd_prev{3,5} 

sum of duration_sd for  
previous 3 and 5 actions respectively 

wrong_attempts  total number of times a student has gotten this 
problem step wrong  
(including within past problems) 

error_perc percentage of past problems the student has 
made errors on this same  
problem step 

help_and_er-
rors_count 

number of times the student asked for help or 
made errors on this skill across all previous  
problems 

num_steps  count of attempts on this step for this problem 
help_at-
tempts_last8 

How many times has the student asked for 
help in their last 8 actions 

er-
ror_count_last5 

How many errors the  
student has made in the last 5 actions (in-
cludes both BUG and ERROR) 

prob-
lem_step_count_
last5 

how many of the last 5  
actions involved the same problem step 

2.3 Modeling 
As in [6], we modeled gaming detection as a binary classification 
problem - a clip with gaming the system was labeled as 1, and 



without as 0. We conducted three overall types of comparisons. 
First, we trained models on the Old data and tested them on the Old 
data (Old to Old). Second, we trained models on the New data and 
tested them on the New data (New to New). For the Old to Old and 
New to New comparisons, we used a 4-fold student-level cross val-
idation in which we left out 25% of students from each training set. 
We then tested each model on the left-out set of students, pooled 
the labels from each split, and calculated metrics on the pooled la-
bels. In our third comparison, we took a model trained using all of 
the Old data and tested it on all of the New data (Old to New), using 
the entire training set since there was no risk of any students being 
present in both data sets, given the 16 year gap. We did not train a 
model on the New data and test it on the Old data, as doing so would 
not answer our research questions. There are cases where it may be 
of interest to conduct the ahistorical analysis of training on newer 
data and testing on legacy data -- such as cases where labels cannot 
be obtained for past data -- but it is not relevant to this use case, 
since text replays can be conducted on legacy data.  

There was considerable imbalance between the classes in the la-
beled data. 5.5% of clips in the Old data set were labeled as gaming 
behavior, and 5.2% of clips in the New data set were labeled as 
gaming behavior. In order to account for this imbalance, we over-
sampled the minority class to achieve a 50-50 balance between the 
classes, in the training sets only (not in the test sets). For over-
sampling the minority class we used Synthetic Minority 
Oversampling Technique (SMOTE) [9] to synthesize new training 
data, without undersampling the majority class, to preserve all data. 
We used the area under the receiver operating characteristic curve 
(AUC ROC) to evaluate not just the predictive accuracy of our 
models but also the performance of our model at all classification 
thresholds. AUC ROC is thought to be better at evaluating classifi-
ers in cases with strong imbalance [19], as is seen here. Gaming 
detection probabilities are frequently used in research involving de-
tectors [28, 30] rather than using a single threshold; AUC ROC 
indicates how effective a model is across confidence levels.  

We applied a variety of classic (available at the time of the original 
publication of the gaming detector [6]) and contemporary machine 
learning models on both the Old and New data sets.  We were un-
certain that the specific original algorithm used in [6], the WEKA 
J48 implementation of C4.5 incorporated into RapidMiner 4.6, 
could be replicated exactly at this point, so scikit-learn’s Decision-
TreeClassifier, which implements the similar algorithm CART 
(Classification and Regression Trees), was selected as a close sub-
stitute. Scikit-learn’s implementations of Neural Networks, 
Random Forest, and XGBoost were also used. Of these, only 
XGBoost was completely unavailable in 2008 [10]. All code for 
this research is available for reference on github at https://anony-
mous.4open.science/r/CogTutorGamingDetectors-627E. 

3. RESULTS 
3.1 Model Performance 
The results of our analyses evaluating different classification mod-
els in our three training-testing scenarios are shown in Table 2. In 
the table columns, we can see the different combinations of training 
and testing. 

All of the classifiers performed well when trained on the Old data 
and also tested on the Old data (Old to Old). The best performance 
was obtained by Random Forest, achieving an AUC ROC of 0.784. 
XGBoost was second-best with an AUC ROC of 0.763, and Deci-
sion Tree was third-best, performing 0.048 worse than Random 
Forest. We evaluated the statistical significance of the difference 

between Random Forest and Decision Tree (the algorithm closest 
to the original paper), using the method outlined in [14] to conduct 
a Z test to compare the area under two ROCs. In this case, Random 
Forest was a statistically significant improvement over Decision 
Tree, Z = 2.334, two-tailed p < 0.05.  
When detectors were developed for the New data and tested on the 
New data (New to New), performance was generally higher than 
for Old to Old, rising above 0.85 for Random Forest, XGBoost, and 
Neural Network. However, for Decision Tree the improvement was 
negligible, rising from 0.736 to 0.738. Random Forest still obtained 
the best performance out of any of the models -- an AUC ROC of 
0.929 for New to New, statistically significantly better than the 
0.784 obtained in the Old to Old model, Z=3.764, two-tailed 
p<0.001. Decision Tree, the algorithm closest to the algorithm used 
in the original paper, was the only model which did not improve 
significantly in performance on the New to New data set, Z=0.03, 
two-tailed p=0.973.  

Table 2. ROC AUC for different models 

Model Trained on 
Old 

Tested on 
Old 

Trained on 
New 

Tested on 
New 

Trained on 
Old 

Tested on 
New 

Decision Tree 0.736 0.738 0.716 

Random Forest 0.784 0.929 0.509 

Neural Net 0.649 0.879 0.398 

XGBoost 0.763 0.921 0.333 

Our primary research question was whether gaming detector mod-
els would degrade over time. This would be shown if the Old 
models achieved poorer performance when applied to New data 
(Old to New), compared to the within-year Old to Old and New to 
New comparisons. All three newer models showed some degrada-
tion in performance, but there was substantial difference in 
degradation between algorithms. The Old to New performance for 
Decision Tree (AUC ROC = 0.716) appeared to have a small de-
cline in performance relative to Old to Old (AUC ROC = 0.738, a 
0.022 decline) but the difference was not statistically significant, 
Z=0.360, two-tailed p = 0.719. The Old to New performance for 
Decision Tree (AUC ROC = 0.716) was also not significantly lower 
than the New to New performance (AUC ROC = 0.736), Z=0.241, 
two-tailed p=0.810, though again there was some appearance of 
slightly poorer performance. 

By contrast, the Old to New performance for Random Forest (AUC 
ROC = 0.509) was statistically significantly worse than the Old to 
Old Performance (AUC ROC = 0.929), Z=6.948, two-tailed 
p<0.0001. It was also significantly worse than the New to New per-
formance for that algorithm (AUC ROC = 0.784), Z=3.380, two-
tailed p<0.001. The Old to New performance for Neural Network 
(AUC ROC = 0.398) was significantly worse than Old to Old Per-
formance (AUC ROC = 0.649), Z=4.445, two-tailed p<0.001. It 
was also significantly worse than the New to New performance for 
that algorithm (AUC ROC = 0.879), Z=6.826, two-tailed p<0.001. 
The Old to New performance for XGBoost (AUC ROC = 0.333) 
was the worst of all, significantly worse than the Old to Old Perfor-
mance (AUC ROC = 0.763), Z=6.498, two-tailed p<0.001. It was 
also significantly worse than the New to New performance for that 
algorithm (AUC ROC = 0.921), Z=7.926, two-tailed p<0.001. 



All four algorithms were able to achieve much better than chance 
performance in the Old to Old as well as the New to New scenarios, 
but the three newer algorithms struggled to make predictions about 
the New data when trained on the Old data. Decision Tree was the 
only model able to transfer from Old Data to the New without drop-
ping substantially in performance. Decision Tree’s performance 
was essentially equal when applied to unseen students in the same 
data set and unseen students in a new data set, suggesting that it 
may not have overfit to the features of the learning system/popula-
tion it was being applied to. The other three algorithms (all of them 
less conservative algorithms than Decision Tree) performed signif-
icantly worse when comparing Old to Old performance and Old to 
New performance. The drops in performance on newer models and 
the relative robustness of the more classic decision tree model indi-
cates that not all algorithms may be equally prone to detector rot. 

3.2 Feature Importance 
To understand how gaming the system is associated with student 
behavior in the logs, and whether this differs between time periods, 
we examined the feature importances of XGBoost, the algorithm 
with the worst drop in performance (also the newest) and Decision 
Tree, the algorithm with the least drop in performance (also the 
closest to the original paper). In doing so, we compared the models 
trained on the Old data and New data. Doing so can also provide 
evidence on how student behaviors have changed or remained con-
sistent over time. The XGBoost algorithm calculates the 
importance of each feature as the 'gain', i.e. "the improvement in 
accuracy brought by each feature across all splits the feature is used 
in" [39]. In the figure below we can see the top 15 features ranked 
by gain in both the Old and New models, for XGBoost.

 

 
Figure 1. XGBoost Old and New Top Features 
 

For XGBoost, in the Old Data we see that the majority of the pre-
dictive power is taken up by the features generated by the ITS’s 
response to the student based on the answer the student has given. 
In particular, we see that rates of correct (assess_CORRECT) 

responses and incorrect (assess_ERROR, assess_BUG) responses 
throughout a clip are strong predictors of gaming behavior, as well 
as the use of hints. 
In the XGBoost model for New data, we see features that are more 
related to time. The sum of the trailing count of how many of the 
last 5 steps were on the same problem (prob_step_last_5_sum) was 
the most important feature. This feature indicates that a student is 
taking many actions on the same problem step, which could indi-
cate that they are trying to game the system by attempting to guess 
the correct answer. In the other top features, we see the average 
time spent on the previous 5 actions in standard deviation units 
based on the distribution of time spent on these problems by all 
students (dur_sd_prev5_mean), the minimum time spent on any ac-
tion within the clip (time_min), and the average time spent on each 
action in standard deviation units (duration_sd_mean). This is more 
in line with features developed in previous gaming detectors [4, 3]. 
Additionally, we see more of a focus on student behavior features, 
like error counts and wrong attempts. This represents a contrast to 
the XGBoost model trained on the Old Data, where most of the 
features were derived from the correctness of student responses and 
whether their errors reflect common errors (perhaps reflecting gen-
uine errors) or rarer ones (perhaps reflecting systematic guessing). 
The features around bugs may be vulnerable to change over time, 
as the list of bugs (and the messages in response to them) has 
changed over the years. Features around hints could also have been 
impacted by changes in hint message content (which may impact 
learning and therefore how often they are used by non-gaming stu-
dents) and by the changes to credit given to non-bottom-out hints. 
By comparison, when we look at the features used by Decision 
Tree, we see a very different pattern. In figure 2 we see that alt-
hough features such as student rates of within-clip correct, 
incorrect, and bugs are relevant within the Decision Tree model for 
the Old data (as with  XGBoost), the variety of types of features 
being used by the Decision Tree model built on Old data is broader 
than for XGBoost. For instance, we see a feature representing 
whether or not this is the student's first time attempting a particular 
problem step attempt on a problem within the clip 
(prob_first_att_max) in the top 6. We also see the 8th most im-
portant feature was pknow-max, assessing how high the student’s 
mastery of the best-known KC in the clip is. These features, which 
are not present in the XGBoost model of the Old data, are helpful 
in understanding the student's relationship with the problems they 
are facing in a given clip.Overall, comparison of feature impor-
tances indicates that the decision tree was making predictions from 
more disparate features than XGBoost. 

When trained on the New data, the Decision Tree focused on a very 
small group of features that were similar to the features most im-
portant to XGBoost when trained on the New data. Again, we see 
the sum of the trailing count of how many of the last 5 steps were 
on the same problem step (prob_step_last_5_sum) as the most im-
portant feature in the New data. In the case of the Decision Tree 
trained on New data, this feature was the most important by a wide 
margin. In the next four features there are two related to evaluating 
the correctness of student responses (assess_CORRECT) and two 
that are related to the number of errors made by students in the clip 
(error_count_last_5_50%, error_perc_sum). These features also 
showed up in the XGBoost feature importance table, although at 
slightly different positions. The relatively stable performance of 
Decision Tree may be due to the stability in the meaning of the 
correctness assessments as opposed to the bug and error assess-
ments (which may have shifted more in meaning between versions, 
with errors becoming bugs as more errors were identified). 



 

Figure 2. Decision Tree New and Old Top Features 
 

4. DISCUSSION AND CONCLUSION 
Our primary research question was the degree to which models of 
a complex educational phenomena such as gaming the system can 
be trusted over time. To investigate this question, we analyzed 
whether gaming detectors built on data from over 15 years ago can 
make reliable predictions for contemporary data. To our pleasant 
surprise, an older model (Decision Tree) trained on older data (from 
17 years ago) still functioned well on contemporary data. However, 
newer, less-conservative algorithms performed much more poorly 
when trained on older data and tested on newer data, a phenomenon 
we term “detector rot”. Across all of our newer models, we ob-
served significant rot -- significant degradation in prediction -- 
when training on Old data and predicting on New data.  
Initial findings conducted with training and test sets from the same 
year initially looked positive for the newer algorithms. More spe-
cifically, Random Forest and XGBoost were able to outperform the 
other algorithms in both the Old to Old and New to New scenarios. 
This corresponds to other findings that contemporary machine 
learning models can offer a better fit and better cross-validated per-
formance for gaming detection e.g. [29]. However, XGBoost was 
the worst-performing algorithm when trained on Old data and 
tested on New data. This result (plus the considerable degradation 
seen for the Neural Network algorithm) raises the concern that 
more advanced models may generally have more difficulty when 
applied to future samples or data drawn from different contexts.  
This set of findings has important implications for detectors of 
complex phenomena currently in place, for the detectors being de-
veloped today, and for best practices when retraining models. We 
suggest the community should be cautious in using newer machine 
learning models -- they may initially be more accurate (even for 
unseen students) but may become less accurate more quickly over 
time than simpler models. At minimum, models developed using 
contemporary algorithms may need to be re-checked more often 

than models using classic algorithms. However, it is not yet clear 
how often new data should be collected or whether old and new 
data should be combined (see, for instance, [20]). 
In our modeling attempts most features were not important to the 
models. Future research might look to analyze these features and 
remove some of the redundancy to reduce overfitting. It is possible 
that this method of reducing overfitting may reduce some of the 
overfit to specific years, but the prominence of specific features in-
volving student errors in the model suggests that changes in 
semantics between the 2005 and 2021 datasets may have been a 
bigger part of the explanation for the observed detector rot. It is 
important to acknowledge that it is not clear from our findings 
which changes between the Old and New data sets resulted in the 
detector rot observed. Across the span of 17 years, changes in the 
user interface, updates to the content of the ITS, and changes in 
student behavior may have impacted the ability of the gaming de-
tectors to transfer. It may be worth attempting to directly identify 
how specific design changes impact detector performance -- for in-
stance, by collecting text replays from right before and right after a 
design change. This might help understand exactly how feature im-
portance and model functional form shifts due to this type of 
change, eventually helping us develop detectors resistant to these 
shifts and understand which design changes may reduce the effec-
tiveness of existing detectors. 
Our findings open a broad range of questions to further research on 
detector rot. Gaming the system is one of many classification tasks 
in educational data mining research and practice. Future research 
should investigate whether other important EDM classification 
problems such as drop-out/stop-out prediction and affect detection 
are impacted by detector rot. There is already evidence for one form 
of detector rot in the case of MOOC stop-out: classifiers trained on 
the first session of a MOOC can be less effective in later sessions 
[8, 36]. However, this finding may be due to differences in the pop-
ulations of students who choose to take a MOOC in its first session, 
rather than the degradation of detectors over time -- i.e. selection 
bias rather than detector rot. Studying what systems and detection 
tasks are most prone to detector rot would be an important contri-
bution to the practical use of detectors in real-world settings. 

One of the exciting aspects of educational data mining over the last 
decade has been the rapid developments in the algorithms available 
for us to use. Newer algorithms offer the promise of better predic-
tive performance on long-standing problems. There is a temptation 
to always go with the newest, most exciting algorithm available, 
and to focus on cross-validated performance or a held-out test set 
from the current data set, rather than looking at replication and gen-
eralizability (see discussion in [14]).  However, our findings 
suggest some of our predictive models may be aging, and this may 
be a more serious problem for contemporary algorithms which 
achieve higher initial performance. Future work can help us under-
stand which changes in learning systems and student populations 
result in detector rot, and how to develop adaptive and future re-
sistant models that will support learners now and for years to come. 

5. ACKNOWLEDGMENTS 
We thank Carnegie Learning for providing us the newer data set for 
analysis, and thank the school district for agreeing to our use of the 
data and supporting our research. We also thank the PSLC 
DataShop for making earlier data available. We thank the NSF for 
their support of this research through grant #DUE-2000405. 



6. REFERENCES 
[1] Almeda, M.V. and Baker, R.S. 2020. Predicting Student Par-

ticipation in STEM Careers: The Role of Affect and 
Engagement during Middle School. 12, 2 (2020), 15. 

[2] Baker, R.S., Corbett, A.T., Koedinger, K.R. and Wagner, 
A.Z. 2004. Off-Task Behavior in the Cognitive Tutor Class-
room: When Students “Game the System.” 6, 1 (2004), 8. 
DOI: https://doi-org.proxy.library.up-
enn.edu/10.1145/985692.985741  

[3] Baker, R.S.J. d., Corbett, A.T., Koedinger, K.R., Evenson, 
S., Roll, I., Wagner, A.Z., Naim, M., Raspat, J., Baker, D.J. 
and Beck, J.E. (2006), Adapting to When Students Game an 
Intelligent Tutoring System. Intelligent Tutoring Systems. M. 
Ikeda, K.D. Ashley, and T.-W. Chan, eds. Springer Berlin 
Heidelberg. 392–401. 
DOI:https://doi.org/10.1007/11774303_39 

[4] Baker, R. S., Corbett, A. T., & Wagner, A. Z. (2006). Human 
classification of low-fidelity replays of student actions. 
In Proceedings of the educational data mining workshop at 
the 8th international conference on intelligent tutoring sys-
tems (Vol. 2002, pp. 29-36). 

[5] Baker, R., Walonoski, J., Heffernan, N., Roll, I., Corbett, A. 
and Koedinger, K. 2008. Why Students Engage in “Gaming 
the System” Behavior in Interactive Learning Environments. 
19, 2 (2008), 185–224. 

[6] Baker, R.S. and de Carvalho, A. 2008. Labeling student be-
havior faster and more precisely with text replays. 
Educational Data Mining. (Jun. 2008), 38. 

[7] du Boulay, B. 2019. Escape from the Skinner Box: The case 
for contemporary intelligent learning environments. British 
Journal of Educational Technology. 50, 6 (Nov. 2019), 
2902–2919. DOI:https://doi.org/10.1111/bjet.12860. 

[8] Boyer, S. and Veeramachaneni, K. 2015. Transfer Learning 
for Predictive Models in Massive Open Online Courses. Arti-
ficial Intelligence in Education. C. Conati, N. Heffernan, A. 
Mitrovic, and M.F. Verdejo, eds. Springer International Pub-
lishing. 54–63. DOI: https://doi-
org.proxy.library.upenn.edu/10.1007/978-3-319-19773-9_6 

[9] Chawla, N.V., Bowyer, K.W., Hall, L.O. and Kegelmeyer, 
W.P. 2002. SMOTE: Synthetic Minority Over-sampling 
Technique. Journal of Artificial Intelligence Research. 16, 
(Jun. 2002), 321–357. DOI:https://doi.org/10.1613/jair.953. 

[10] Chen, T. and Guestrin, C. 2016. XGBoost: A Scalable Tree 
Boosting System. Proceedings of the 22nd ACM SIGKDD 
International Conference on Knowledge Discovery and Data 
Mining (San Francisco California USA, Aug. 2016), 785–
794. DOI: https://doi-org.proxy.library.up-
enn.edu/10.1145/2939672.2939785 

[11] Corbett, A.T. and Anderson, J.R. 1995. Knowledge tracing: 
Modeling the acquisition of procedural knowledge. User 
Modelling and User-Adapted Interaction. 4, 4 (1995), 253–
278. DOI:https://doi.org/10.1007/BF01099821. 

[12] DiCerbo, K.E. and Kidwai, K. 2013. Detecting Player Goals 
from Game Log Files. (2013), 2. 

[13] Fancsali, S.E., Li, H., Sandbothe, M. and Ritter, S. 2021. 
Targeting Design-Loop Adaptivity. (2021), 8. 

[14] Fogarty, J., Baker, R. S., & Hudson, S. E. (2005, May). Case 
studies in the use of ROC curve analysis for sensor-based 

estimates in human computer interaction. In Proceedings of 
Graphics Interface 2005 (pp. 129-136). 

[15] Gardner, J., Yang, Y., Baker, R. and Brooks, C. 2018. Ena-
bling End-To-End Machine Learning Replicability: A Case 
Study in Educational Data Mining. arXiv:1806.05208 [cs, 
stat]. (Jul. 2018). DOI: 
https://doi.org/10.48550/arXiv.1806.05208 

[16] Gray, L. 2020. Teachers’ Use of Educational Technology in 
U.S. Public Schools: 2009, First Look. (2020), 70. 

[17] Gundersen, O.E. and Kjensmo, S. 2018. State of the Art: Re-
producibility in Artificial Intelligence. 32, 1 (Apr. 2018), 8. 
Retrieved from https://ojs.aaai.org/index.php/AAAI/arti-
cle/view/11503 

[18] Izurieta, C. and Bieman, J.M. 2013. A multiple case study of 
design pattern decay, grime, and rot in evolving software 
systems. Software Quality Journal. 21, 2 (Jun. 2013), 289–
323. DOI:https://doi.org/10.1007/s11219-012-9175-x. 

[19] Jeni, L.A., Cohn, J.F. and De La Torre, F. 2013. Facing Im-
balanced Data--Recommendations for the Use of 
Performance Metrics. 2013 Humaine Association Conference 
on Affective Computing and Intelligent Interaction (Geneva, 
Switzerland, Sep. 2013), 245–251. DOI: https://doi-
org.proxy.library.upenn.edu/10.1109/ACII.2013.47 

[20] Jordan, M.I. and Mitchell, T.M. 2015. Machine learning: 
Trends, perspectives, and prospects. Science. 349, 6245 (Jul. 
2015), 255–260. DOI:https://doi.org/10.1126/sci-
ence.aaa8415. 

[21] Karumbaiah, S., Lan, A., Nagpal, S., Baker, R.S., Botelho, 
A. and Heffernan, N. 2021. Using Past Data to Warm Start 
Active Machine Learning: Does Context Matter? LAK21: 
11th International Learning Analytics and Knowledge Con-
ference (Irvine CA USA, Apr. 2021), 151–160. DOI: 
https://doi-org.proxy.library.up-
enn.edu/10.1145/3448139.3448154 

[22] Koedinger, K.R., Leber, B. and Stamper, J. 2010. A Data Re-
pository for the EDM community: The PSLC DataShop. 
(2010), 43–56. 

[23] Koedinger, K. R., Corbett, A. T., & Perfetti, C. (2012). The 
Knowledge‐Learning‐Instruction framework: Bridging the 
science‐practice chasm to enhance robust student learn-
ing. Cognitive science, 36(5), 757-798. DOI: 
https://doi.org/10.1111/j.1551-6709.2012.01245.x 

[24] Muldner, K., Burleson, W., Van de Sande, B. and VanLehn, 
K. 2011. An analysis of students’ gaming behaviors in an in-
telligent tutoring system: predictors and impacts. User 
Modeling and User-Adapted Interaction. 21, 1–2 (Apr. 
2011), 99–135. DOI:https://doi.org/10.1007/s11257-010-
9086-0. 

[25] Ocumpaugh, J., Baker, R.S. and Rodrigo, M.M.T. 2015. 
Baker Rodrigo Ocumpaugh Monitoring Protocol (BROMP) 
2.0 Technical and Training Manual. (2015), 73. 

[26] Owen, V.E., Anton, G. and Baker, R. 2016. Modeling User 
Exploration and Boundary Testing in Digital Learning 
Games. Proceedings of the 2016 Conference on User Model-
ing Adaptation and Personalization (Halifax Nova Scotia 
Canada, Jul. 2016), 301–302. DOI: https://doi-org.proxy.li-
brary.upenn.edu/10.1145/2930238.2930271 

[27] Paquette, L. and Baker, R.S. 2019. Comparing machine 
learning to knowledge engineering for student behavior 



modeling: a case study in gaming the system. Interactive 
Learning Environments. 27, 5–6 (Aug. 2019), 585–597. 
DOI:https://doi.org/10.1080/10494820.2019.1610450. 

[28] Paquette, L., Baker, R.S. and Moskal, M. 2018. A System-
General Model for the Detection of Gaming the System Be-
havior in CTAT and LearnSphere. Artificial Intelligence in 
Education. C. Penstein Rosé, R. Martínez-Maldonado, H.U. 
Hoppe, R. Luckin, M. Mavrikis, K. Porayska-Pomsta, B. 
McLaren, and B. du Boulay, eds. Springer International Pub-
lishing. 257–260. DOI: https://doi-
org.proxy.library.upenn.edu/10.1007/978-3-319-93846-2_47 

[29] Quinlan, J.R.. (1993) C4. 5: programs for machine learning. 
Thousand Oaks, CA: Morgan Kauffmann. 

[30] Richey, J.E., Zhang, J., Das, R., Andres-Bray, J.M., Scruggs, 
R., Mogessie, M., Baker, R.S. and McLaren, B.M. 2021. 
Gaming and Confrustion Explain Learning Advantages for a 
Math Digital Learning Game. Artificial Intelligence in Edu-
cation. I. Roll, D. McNamara, S. Sosnovsky, R. Luckin, and 
V. Dimitrova, eds. Springer International Publishing. 342–
355. DOI: https://doi-org.proxy.library.up-
enn.edu/10.1007/978-3-030-78292-4_28 

[31] Ritter, S., Anderson, J.R., Koedinger, K.R. and Corbett, A. 
2007. Cognitive Tutor: Applied research in mathematics edu-
cation. Psychonomic Bulletin & Review. 14, 2 (Apr. 2007), 
249–255. DOI:https://doi.org/10.3758/BF03194060. 

[32] Ritter, S., Harris, T. K., Nixon, T., Dickison, D., Murray, R. 
C., & Towle, B. (2009). Reducing the Knowledge Tracing 
Space. International Working Group on Educational Data 
Mining. 

[33] Ritter, S., Yudelson, M., Fancsali, S. E., & Berman, S. R. 
(2016, April). How mastery learning works at scale. In Pro-
ceedings of the Third (2016) ACM Conference on 

Learning@ Scale (pp. 71-79). DOI: https://doi-org.proxy.li-
brary.upenn.edu/10.1145/2876034.2876039 

[34] Sao Pedro, M.A., de Baker, R.S.J., Gobert, J.D., Montalvo, 
O. and Nakama, A. 2013. Leveraging machine-learned detec-
tors of systematic inquiry behavior to estimate and predict 
transfer of inquiry skill. User Modeling and User-Adapted 
Interaction. 23, 1 (Mar. 2013), 1–39. 
DOI:https://doi.org/10.1007/s11257-011-9101-0. 

[35] Schofield, J. W. (1995). Computers and classroom culture. 
Cambridge University Press. 

[36] Twenge, J.M., Martin, G.N. and Spitzberg, B.H. 2019. 
Trends in U.S. Adolescents’ media use, 1976–2016: The rise 
of digital media, the decline of TV, and the (near) demise of 
print. Psychology of Popular Media Culture. 8, 4 (Oct. 
2019), 329–345. DOI:https://doi.org/10.1037/ppm0000203. 

[37] Whitehill, J., Mohan, K., Seaton, D., Rosen, Y. and Tingley, 
D. 2017. Delving Deeper into MOOC Student Dropout Pre-
diction. arXiv:1702.06404 [cs]. (Feb. 2017). DOI: 
https://doi.org/10.48550/arXiv.1702.06404 

[38] Xia, M., Asano, Y., Williams, J.J., Qu, H. and Ma, X. 2020. 
Using Information Visualization to Promote Students’ Re-
flection on “Gaming the System” in Online Learning. 
Proceedings of the Seventh ACM Conference on Learning @ 
Scale (Virtual Event USA, Aug. 2020), 37–49. DOI: 
https://doi-org.proxy.library.up-
enn.edu/10.1145/3386527.3405924 

[39] Yudelson, M., Fancsali, S., Ritter, S., Berman, S., Nixon, T., 
& Joshi, A. (2014, July). Better data beats big data. In Edu-
cational data mining 2014. 

[40] XGBoost developers. (2021). Python API Reference. 
XGBoost Documentation. Retrieved February 13, 2022, from 
https://xgboost.readthedocs.io/ 

 

 

Columns on Last Page Should Be Made as Close As Pos-
sible to Equal Length 


