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Abstract. In education, intelligent learning environments allow stu-
dents to choose how to tackle open-ended tasks while monitoring per-
formance and behavior, allowing for the creation of adaptive support to
help students overcome challenges. Timely feedback is critical to aid stu-
dents’ progression toward learning and improved problem-solving. Feed-
back on text-based student responses can be delayed when teachers are
overloaded with work. Automated evaluation can provide quick student
feedback while easing the manual evaluation burden for teachers in areas
with a high teacher-to-student ratio. Current methods of evaluating stu-
dent essay responses to questions have included transformer-based natu-
ral language processing models with varying degrees of success. One main
challenge in training these models is the scarcity of data for student-
generated data. Larger volumes of training data are needed to create
models that perform at a sufficient level of accuracy. Some studies have
vast data, but large quantities are difficult to obtain when educational
studies involve student-generated text. To overcome this data scarcity
issue, text augmentation techniques have been employed to balance and
expand the data set so that models can be trained with higher accuracy,
leading to more reliable evaluation and categorization of student answers
to aid teachers in the student’s learning progression. This paper examines
the text-generating AI model, GPT-3.5, to determine if prompt-based
text-generation methods are viable for generating additional text to sup-
plement small sets of student responses for machine learning model train-
ing. We augmented student responses across two domains using GPT-3.5
completions and used that data to train a multilingual BERT model.
Our results show that text generation can improve model performance
on small data sets over simple self-augmentation.
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1 Introduction

Researchers in educational contexts investigate how students reason and learn
to discover new ways to evaluate their performance and provide feedback that
promotes growth. Intelligent learning environments (ILEs) for K-12 students
are designed to incorporate inquiry-based, problem-solving, game-based, and
open-ended learning approaches [17,21,23]. By allowing students to choose how
they approach and tackle open-ended tasks [37], they can utilize the resources
available in the environment to gather information, understand the problem, and
apply their knowledge to solve problems and achieve their learning objectives.
At the same time, ILEs monitor students’ performance and behavior, allowing
for the creation of adaptive support to help students overcome challenges and
become more effective learners [2,7,33].

Some research in this field aims to understand the factors that impact learn-
ing in various contexts. One area of study is centered on national and interna-
tional literacy standards [1], which mandate that students should be able to think
critically about science-related texts, understand scientific arguments, evaluate
them, and produce well-written summaries. This is crucial for addressing soci-
etal issues such as bias, “fake news,” and civic responsibility. However, achieving
deep comprehension of explanations and arguments can be difficult for teenage
students [25]. Additionally, research in discourse psychology suggests that stu-
dents’ reading strategies are shaped by their assigned reading task and other
contextual dimensions [8]. For example, prior research has shown that students
generate different types of inferences when reading as if to prepare for an exam
compared to reading for leisure [9]. Similarly, students’ writing is influenced by
their perception of the audience [12].

Student responses in educational settings usually have a specific structure or
purpose, which aligns with the grading criteria and demonstrates the student’s
level of understanding of the material. Natural Language Processing (NLP)
techniques like sentence classification can be used to analyze student perfor-
mance and provide feedback quickly [19]. BERT-based models have revolution-
ized the NLP field by being pre-trained on large datasets such as Wikipedia and
BooksCorpus [15], giving them a deep understanding of language and how words
are used in context. These models can then be fine-tuned for specific tasks by
adding an output layer and training it with a smaller labeled dataset.

One common approach to improve models’ performance with limited data is
data augmentation [30]. This technique is commonly used in other fields of AI,
such as computer vision. Attempts have been made to apply data augmentation
techniques to text data [11], but it is more challenging because small changes
in the text can produce bigger changes in the meaning, leading to errors in
model training. Some current data augmentation techniques for text data involve
modifying original responses, such as misspelling words or replacing them with
similar words [34].

In this paper, we investigate text generation using three different “tem-
peratures” and compare the results to a baseline measurement and a self-
augmentation method, where the original data set is replicated to increase the
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training data. This technique of self-augmentation has been successful in previ-
ous research [13], and similar methods have been applied to computer vision with
improved model performance [29]. We aim to determine the appropriate level of
augmentation and establish a baseline measurement for comparison when addi-
tional augmentation techniques are applied.

2 Background and Research Questions

Data sets in educational contexts can sometimes be large, but when they are
comprised of students’ hand-generated responses, they tend to be on the order
of at most few hundred responses. The amount of data obtained is sometimes a
function of the nature of the tests. Modern machine learning models come pre-
trained on various data sets. However, in order to improve performance on a given
downstream task, these models need to be fine-tuned using labeled data [36].
Although some of these models can be good at zero-shot or few-shot learning [35],
they are designed to allow further fine-tuning to improve performance for specific
tasks when sufficient training data in both quantity and quality is available [18].

These educational data sets are also often imbalanced, meaning each label
does not have equal representation. Machine learning models perform better
when the data is close to being balanced across labels [28]. Data augmentation
has improved model performance in image processing [30]. However, that pro-
cess does not translate directly to text-based models. Simple replication of the
data can be used and is referred to as self-augmentation. Looking at techniques
beyond self-augmentation, [6] describes a taxonomy and grouping for data aug-
mentation types. Cochran et al. showed that augmentation using masking, noise,
and synonyms can improve classification performance [14]. This study continues
that research by exploring augmentation using a generative AI method.

Recent studies have used text generation to improve classifier performance
by augmenting data to create additional training data artificially [27,31]. The
intent is to address the imbalance in data sets and allow smaller data sets to
acquire larger data volumes to aid model training. Several survey papers on
text augmentation break down the various types of data augmentation currently
being researched [5,16,22]. In the generative method of text augmentation, arti-
ficial student responses are generated using a predictive model that predicts the
response given a text prompt as input.

The OpenAI API performs NLP tasks such as classification or natural lan-
guage generation given a prompt. OpenAI provides an interface for the Gener-
ative Pretrained Transformer 3.5 (GPT-3.5) [10], one of the most powerful lan-
guage models available today [26]. A recent study has shown improvement for
short text classification with augmented data from GPT-3.5, stating that it can
be used without additional fine-tuning to improve classification performance [3].
Additionally, [6] note that GPT-3.5 is the leading augmentation method among
recent papers and may even be able to replicate some instances whose labels are
left out of the data set (zero-shot learning).

The student response data sets contain labels for each response correspond-
ing to a hand-graded value on a grading rubric. Transformer-based NLP models,
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such as BERT [15] and GPT-3.5 [10], are now the industry standard for modeling
many NLP tasks. Previous research by [14] shows that BERT-based transformers
work well for text classification of student responses to STEM questions. There-
fore, we are using GPT-3.5 for augmentation and continue to use BERT-based
models for classification. Since we have two data sets in two languages, English
and French, we use a BERT-based multilingual model as the classifier of choice.

RQ 1: Can artificially-generated responses improve base model classification
performance? Our hypothesis H1 is that additional augmented data will improve
model performance for smaller data sets. Determining how large a data set needs
to be before it would not require data augmentation is out of the scope of this
study. Here, we are determining if augmentation will work for these data sets at
all (i.e. can we reject the null hypothesis that the models perform the same with
and without augmented data).

RQ 2: Can artificially-generated responses outperform self-augmentation when
used for training models for sentence classification? Our hypothesis H2 is that
artificially-generated responses will outperform the self-augmentation method
because they are not simple copies of the data, so more of the domain is likely
to be filled with unique examples when creating the augmented data space.

RQ 3: Does temperature sampling of the artificially-generated student responses
affect model performance? Recall the temperature variable for the OpenAI API
allows for altering the probability distribution for a given pool of most likely
completions. A lower value creates responses almost identical to the prompt text.
A higher value (up to a maximum of 1) allows the model to choose more “risky”
choices from a wider statistical field. H3 proposes that augmenting the data
with slightly more risky answers, equating to a temperature of 0.5, will provide
the best performance in general. Until we test, we do not want to speculate if
a number closer to 1.0 would improve performance or not. We hypothesize the
temperature setting of 0.5 would be on the low side.

RQ 4: Does performance ultimately degrade when the model reaches a suffi-
cient level of augmentation? It can be assumed that any augmentation would
encounter overfitting, where model performance begins to degrade at some point
[13]. H4 is that the performance will degrade with additional augmentation after
a peak is reached. H5 is that the performance will degrade more slowly with
higher temperature augmented data sets and thus support the idea that more
risk involved in generated responses is better for larger amounts of augmentation.

3 Methods

3.1 Data Sets

Two data sets were obtained for this study. The first data set is from a discourse
psychology experiment at a French university where 163 students were given an
article describing links between personal aggression and playing violent video
games. The participants were asked to read the article and write a passage to
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either a friend in a “personal” condition or a colleague in an “academic” condi-
tion. Our evaluation was around whether or not they asserted an opinion on the
link between violent video games and personal aggression. The label quantities
from the data set are shown in Table 1. The majority label quantity, “No Opin-
ion”, is shown in bold. The rightmost column gives the Entropy measure for the
data, normalized for the four possible outcomes. A dataset which is balanced
across labels would have an entropy value near 1.

Table 1. French Student Response Data Split for the Opinion Concept

Label No Opinion Link Exists No Link Partial Link Normalized Entropy

Count 118 7 13 25 0.619

The second data set was obtained from a study [4,20,24,37] on students
learning about rainwater runoff with responses from 95 6th-grade students in
the southeastern United States. Responses were given in the English language.

Each of the six concepts was modeled individually as a binary classification
task. Student responses that included the corresponding concept were coded as
Present. Responses were otherwise coded as Absent. As previously mentioned,
many small educational data sets are imbalanced. Table 2 shows the label quan-
tities indicating the scarcity of data and the degree of imbalance in the dataset.

Table 2. Rainwater Runoff Student Response Data Split per Question

Concept Absent Present Entropy

1 10 85 0.485

2a 25 70 0.831

2b 64 31 0.911

3a 44 51 0.996

3b 73 22 0.895

3c 57 38 0.971

3.2 Augmentation Approach

The label quantities shown in Tables 1 and 2, along with the normalized entropy,
have the majority quantity of reference for that particular data set shown
in bold. A balanced data set would have equal quantities across all labels and
normalized entropy values at or near 1.0. We define an augmentation level of 1x
when all labels have the same quantity as the majority quantity of reference for
that data set. All data sets after that was augmented in multiples of the majority
quantity up to 100x, or 100 times the majority quantity of reference for that data
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set. We generated data using GPT-3.5 (model “text-curie-001”) with the prompt
“paraphrase this sentence” and inserted an actual student response to fill in the
rest of the language prompt. The data was generated, stored, and used directly
in fine-tuning the BERT-based language models. The only modification was to
add BERT’s “special” [CLS] and [SEP] tokens so the model could process the
text.

The OpenAI API provides a method for varying the degree of “aggressive-
ness” in generating text by adjusting temperature sampling. In this study, we
performed tests at temperature values of 0.1, 0.5, and 0.9 to determine if tem-
perature is an important factor in text generation such that it affects model
performance.

After GPT-3.5 was used to create artificial student responses to augment
small data sets, those augmented data sets were then used to determine if model
performance using sentence classification improves or degrades.

3.3 Model Classification

Since we had data sets in two different languages, we chose a multilingual model
to compare the use of language when performing fine-tuning. We chose the
Microsoft Multilingual L12 H384 model as a basis for all testing due to its perfor-
mance gains over the base BERT model and its improved ability for fine-tuning
[32]. We fine-tuned it using a combination of original data and augmented data
for training. Data was held out from the original data set for testing purposes. A
separate BERT model was fine-tuned for each concept and augmentation type
to classify the data by adding a single feed-forward layer. This resulted in 28
separate BERT-based models that were fine-tuned and evaluated for this study.
We used the micro-F1 metric as the performance measurement. The models were
trained and evaluated ten times, with each training iteration using a different
seed for the random number generator, which partitions the training and testing
instances. The train/test split was 80/20.

3.4 Baseline Evaluation

We evaluated two different baseline models for each concept. The a priori model
chose the majority classification for each concept. For our unaugmented baseline,
we applied BERT prototypically without data augmentation or balancing. The
baseline performance results are shown in Table 3.

4 Results

Table 3 presents a summary of the results. Each row corresponds to a concept
for the English data set, with one row for the French Data set. The leftmost data
column shows the percentage of the answers for each concept marked with the
majority label. The following two columns present the baseline results. On the
right are the maximum F1 scores for each concept using either self-augmented
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or generated data and indicating the augmentation level used to achieve that
maximum performance. The highest performance for each data set is shown in
bold, indicating which method or data set was used to achieve that score.

Table 3. Performance (micro-F1) of baseline vs all augmented models

Concept % Maj.
Label

Baseline Max Performance

a priori Unaug. Self GPT-3.5 Aug.

French 73 0.720 0.575 0.636 0.612 21x

C1 89 0.940 0.735 0.789 0.815 0.6x

C2a 73 0.850 0.757 0.931 0.921 8x

C2b 67 0.670 0.547 0.852 0.874 55x

C3a 54 0.700 0.532 0.726 0.815 55x

C3b 77 0.770 0.684 0.926 0.952 55x

C3c 60 0.600 0.568 0.747 0.832 89x

Figure 1 illustrates how each of the four augmentation methods affected
model performance as more augmentation was used to train the model. The
“self” label on the chart indicates the self-augmentation method of creating
multiple copies of the original data. The numbers 0.1, 0.5, and 0.9 indicate the
temperature setting used on the GPT-3.5 API to provide varied responses, as
previously discussed. Note that as augmentation increases, the “self” method
peaks and begins to decline in performance with additional training data added,
where the augmented models using GPT-3.5 do not drop off as much. This
indicates the model is more tolerant of this generated data than continuing to
fine-tune on the same small data set, copied multiple times.

Fig. 1. French Model Performance (micro-F1) per Augmentation Type. (Note: The
x-axis shows the level of augmentation applied from 0x to 100x.)
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Figure 2 shows how each of the model’s (one for each concept) performances
varied with training data using different augmentation types of self, and the
other lines indicate each of the three temperatures used to generate text. Note
that self-augmentation peaks early while the other types continue improving
performance.

Fig. 2. Rainwater Runoff Model Performance per Augmentation Type. (Note: The
x-axis shows the level of augmentation applied from 0x to 100x.)

5 Discussion

Recall RQ 1, which asks if artificially-generated responses improve base model
performance. This research shows that the augmented model outperformed the
unaugmented model in all seven concepts. However, the a priori computation
which always selects the majority label won on two of the data sets. Our hypothe-
sis H1 stated that additional augmented data would improve model performance
for smaller data sets, and that was shown to be supported by this data. The base
model testing without augmentation was always improved upon with augmented
data. However, two data sets, C1 and the French Data, were heavily imbalanced.
Their entropy values were far from ideal, as shown in Tables 1 and 2. In these
cases where entropy is low, guessing the majority label performed better than
machine learning models to predict the label for the student response. Deter-
mining augmentation methods that improve performance on low-entropy data
sets is an area of further research.
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RQ 2 asks if artificially-generated responses outperform self-augmentation
when training models for classification. This study shows that the maximum
performance was achieved using artificially-generated responses in four out of
seven concepts. Our hypothesis H2 stating that artificially-generated responses
will outperform simple replication of existing data as in the self-augmentation
method was partially supported. This experiment shows that although simply
replicating given data might produce good performance, generating new exam-
ples usually produced the best performance. However, this research also shows
that the performance degrades faster when the only data augmentation is from
self-augmentation. This needs further research to determine if this is a consis-
tent way to get the model training jump-started before adding other types of
augmentation into the mix.

Next, RQ 3 asks if temperature sampling of the artificially-generated student
responses affects model performance. Examining the maximum performance at
each augmentation level did not reveal a single winner among the three tem-
peratures used for student response generation. H3 proposed that augmenting
the data with slightly more risky answers, equating to a temperature of 0.5,
will provide the best performance in general. In the charts presented in Figs. 1
and 2, each data set augmented by the three temperatures varied in perfor-
mance but were similar to each other. Toward higher values of augmentation,
the more risky generation using a temperature of 0.9 continued to increase in
performance, indicating reduced overfitting during training. Temperature vari-
ation did not significantly alter performance but should be investigated further
to see if that is true in general, or only in these specific data sets.

Finally, RQ 4 ponders if performance ultimately degrades when the model
reaches a sufficient level of augmentation. In all models tested, performance
peaks and degrades after 55x to 89x augmentation. Table 3 shows the augmen-
tation level at which performance peaked and began to fade. H4 states that the
performance will degrade with additional augmentation, which was supported by
all the models tested. H5 further states that the performance will degrade more
slowly with higher temperature and thus more risky generated responses. When
examining the performance changes in Figs. 1 and 2, the highest temperature,
0.9, rose in performance similar to other temperatures but decreased at a slower
pace than the other temperatures, especially at higher augmentation levels. Due
to this observation, this hypothesis is supported by the data.

6 Conclusion

This study intended to determine if GPT-3.5 was a viable solution to generate
additional data to augment a small data set. We used one multilingual BERT-
based model, trained it using two different data sets in two languages augmented
by two different methods, and compared that result to baseline models against
one using self-augmentation and three with GPT-3.5 augmentations. In four out
of seven cases, a model augmented with GPT-3.5 generated responses pushed
the performance beyond what could be achieved by other means.
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Another objective of this study was to determine if setting the temperature
or riskiness in GPT-3.5 response generation would affect performance. Our data
shows that while it may not achieve peak results, the higher temperature gener-
ated text has more longevity because the models could take on more augmented
data and maintain stability than other temperatures or self-augmentation.

These empirical tests show that augmentation methods such as self-
augmentation and text generation with GPT-3.5 drastically improve perfor-
mance over unaugmented models. However, the performance achieved by these
models leveled off quickly after augmentation amounts of around fifty times the
amount of original data. In addition, two data sets with severely imbalanced
data did not improve performance enough to overcome their a priori computed
values.

Using a higher temperature value when generating data from the GPT-3.5
model did not yield the highest-performing results but came very close. The
added benefit of using the higher temperature is that the generated student
responses seemed more diverse, allowing the model to prevent overfitting, even
at higher augmentation levels.

7 Future Work

In this study, we showed how self-augmentation rises quickly but then levels
off and degrades performance. Further research must be done to increase the
diversity in generated student responses and research combinations of different
augmentation techniques, including GPT-3.5 temperature that might be intro-
duced at different augmentation levels.
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