Procrastination vs. Active Delay: How Students Prepare to Code
in Introductory Programming

Elizabeth B. Cloude
elizabeth.cloude@tuni.fi
Tampere University
Tampere, Finland

Ryan S. Baker
ryanshaunbaker3@gmail.com
University of Pennsylvania
Philadelphia, PA, USA

ABSTRACT

When students procrastinate on programming assignments, it can
hinder the quality of their code and negatively impact their grades.
In contrast, when students actively delay working on assignments
to prepare to code (e.g., reading or seeking help), it can be an effec-
tive self-regulated learning (SRL) strategy beneficial to program-
ming performance. However, distinguishing active delay from pro-
crastination is methodologically challenging. To address this, we
tracked what students did when they behaviorally delayed starting
an assignment. Most students prepared to code by using multiple
course resources across programming assignments. We found that
many students delayed starting to code by seeking help in the Q&A
platform, and this was beneficial to the quality of their code. Also,
some pre-coding activities were related to behavioral delay in start-
ing to code, but benefitted students’ grades, and thus may indicate
active delay, but not all pre-coding activities were beneficial. By
considering pre-coding activities, we gain a comprehensive view
of students’ approach to coding in CS education.

CCS CONCEPTS

« Social and professional topics — Computing education; «
Applied computing — E-learning,.

KEYWORDS

procrastination, active delay, CS1, learning behaviors

ACM Reference Format:

Elizabeth B. Cloude, Jiayi Zhang, Ryan S. Baker, and Eric Fouh. 2024. Procras-
tination vs. Active Delay: How Students Prepare to Code in Introductory Pro-
gramming. In Proceedings of the 55th ACM Technical Symposium on Computer
Science Education V. 1 (SIGCSE 2024), March 20-23, 2024, Portland, OR, USA.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3626252.3630907

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0423-9/24/03.

https://doi.org/10.1145/3626252.3630907

Jiayi Zhang
jzhang7718@gmail.com
University of Pennsylvania
Philadelphia, PA, USA

Eric Fouh

efouh@cis.upenn.edu
University of Pennsylvania
Philadelphia, PA, USA

1 INTRODUCTION

Self-regulated learning (SRL) is an important skill for students to
develop in computer science (CS) education [2, 17, 21]. Effective SRL
involves students playing an active role in their learning, by con-
tinuously monitoring and evaluating learning processes to achieve
learning goals [23]. When students are less effective self-regulated
learners, e.g., they procrastinate on their assignments, they per-
form worse compared to better self-regulated learners [8]. However,
studies find inconsistent results, where sometimes procrastination
is beneficial to the quality of code and performance [13].

The mixed findings on procrastination and performance may
stem from two limitations in literature. First, the methods used
to define when students procrastinate are problematic [6]. Some
studies leverage self-report data to measure procrastination, while
others use behavioral measures of delay, such as how late students
start to code an assignment after it is released [8, 25], or how close
the assignment is started to the deadline [15]. Second, solely relying
on delay measures may not be the best way to measure procrasti-
nation, especially when many students actively delay their work
as an adaptive strategy [2]. Active delay allows students to prepare
in advance and often benefits their grades [5, 6, 25].

The inconsistent findings on the relationship between procras-
tination and performance could be due to challenges in properly
distinguishing between procrastination and active delay. Lever-
aging single measures of delay may not holistically represent if,
when, and to what extent students procrastinated or actively de-
layed working on their assignments. To address these limitations,
the objective of this work was to examine students’ pre-coding
behaviors prior to completing multiple programming assignments,
such as their degree of preparation for assignments based on how
often they accessed course resources, e.g., digital textbook, online
office hours, before they started coding. Next, we examined whether
pre-coding activities predicted students’ behavioral delay in start-
ing to code and grades in an introductory CS course. Our research
questions are below:

e Do students prepare to code an assignment, and do they
prepare more for difficult assignments? We hypothesize that
some students will engage with course resources prior to
coding. In addition, we expect that students will engage with
course resources more often for difficult assignments.

https://orcid.org/0000-0002-7599-6768
https://orcid.org/0000-0002-7334-4256
https://orcid.org/0000-0002-3051-3232
https://orcid.org/0000-0003-3869-9112
https://doi.org/10.1145/3626252.3630907
https://doi.org/10.1145/3626252.3630907

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

e Does the extent of preparing to code predict when students
will start to code a programming assignment? We hypothe-
size that if students engage with course resources more often
prior to coding, this will predict when they start working on
the programming assignment.

e Does preparing to code predict students’ grades in an intro-
ductory programming course? We hypothesize that students
who engage with course resources prior to starting an assign-
ment will achieve better grades in the introductory course.

2 RELATED WORK

A meta-analysis [13] revealed that the relationship between pro-
crastination and performance was mediated by how researchers
defined and measured the construct [10, 18]. A critical way to tease
apart the relationship between procrastination and performance
lies in utilizing proper and consistent methods. Historically, most
studies of procrastination in computer science utilize single mea-
sures of behavioral delay to determine if a student is procrastinating,
such as starting a task early [9] or late [8, 12, 18]. But not all delay
is a failure to engage in SRL and thus may not be detrimental to
performance [5]. Some students strategically delay their work to
prepare for the task. In this way, their intention to delay is based
on their metacognitive awareness of their abilities, and preparing
in advance when needed is evidence of an adaptive SRL strategy.

To discern between procrastination and active delay, [6] exam-
ined whether students who reported more active delay differed
in grades, and self-reported SRL strategy use and goal orientation
compared to students who reported more procrastination. Students
who reported more procrastination had lower grades, but those
who reported more active delay had higher grades. Procrastinators
utilized less metacognitive strategies; in contrast, students who
reported more active delay had higher self-efficacy. These findings
suggest that students who actively delay differed from procrasti-
nators in metacognitive strategy use and feelings of confidence.
However, there are limitations with using self-report data; partly
because many students’ self-report data do not align with their
actual learning behaviors (e.g., [3]).

Lindt et al. [16] extended this work by examining whether stu-
dents who actively delayed or procrastinated differed in grades us-
ing a mixed-methods approach. First, they administered the Procras-
tination Assessment Scale [11] and Active Procrastination Scale [4].
Next, semi-structured interviews were conducted to more deeply
understand the differences between procrastinators and active de-
layers. The results revealed that many students reported delaying
their work on assignments until days or hours before the deadline
was not intended as a strategy. Procrastinators explained they un-
intentionally delayed their work as a form of avoidance, possibly
because of anxiety or fear of failure [16]. Students who actively
delayed their work did so in order to prepare.

Most studies utilize single measures of behavioral delay to deter-
mine if a student is procrastinating, such as starting a task early [9]
or late [12, 18]. In a study of over 1100 CS1 students collected across
five years [8], the results showed that students who started working
on their assignments earlier demonstrated better quality of work on
their assignments. The authors argued that this result may suggest

Cloude, Zhang, Baker, & Fouh

that active delayers start the assignment earlier than procrastina-
tors based on its relationship to performance; still, questions remain
unanswered about whether students were actively delaying inten-
tionally instead of procrastinating. Wessel et al. [22] extended this
work by comparing behavioral delay measures collected using ex-
perienced sampling (ESM) with self-reported data in a longitudinal
study. Self-reported measures were administered at randomly vary-
ing moments to gauge their procrastination and active delay while
students worked on multiple programming assignments through-
out the course. Results showed that self-reported procrastination
was positively associated with behavioral delay (completing an
assignment); whereas, self-reported active delay was not associated
with behavioral delay.

In sum, prior studies suggest that discerning between active
delay and procrastination is possible, and perhaps, students who
actively delay their work are effective self-regulated learners. Lever-
aging other data channels to supplement behavioral delay measures
may better represent what students are doing when they are de-
laying an assignment. Few studies in CS education measure what
students do outside of a programming activity to define their level
of procrastination or active delay. [25] found that students who
voluntarily practiced programming problems submitted their as-
signments earlier and had better grades, possibly indicating a form
of active delay. Results also showed that many students submit-
ted their assignments later more often based on how difficult the
assignment was, possibly due to anxiety or fear of failure [16].

To better distinguish between active delay and procrastination,
researchers need to supplement behavioral delay measures regard-
ing work on the assignment with measures of what students are
doing to prepare for the assignment to capture the nature of the
students’ delay. If the student is delaying work on an assignment,
are they also engaging with course resources during this delay and
then working on the assignment? What preparation activities are
students engaging in when they have access to multiple course
resources designed to support their progress and success in the
course (e.g., office hours, electronic textbook, Q&A discussion fo-
rum, lecture videos, etc.). and is this a predictor of their behavioral
delay? Collecting what students do to prepare for an assignment
may reveal if, and when, students may intentionally delay their
work compared to students who procrastinate to better understand
its impact on performance.

3 PARTICIPANTS AND COURSE DESIGN

Three hundred and one undergraduate students (n=301) completed
this study by enrolling in a CS1 course at a large, private university
in the northeastern USA during the Fall 2020 semester (14 weeks).
The course was taught online due to the COVID pandemic and
was designed for students who had little to no prior computing
experience, most of whom were in their first semester of college and
had not declared a major. An ethical review committee approved
this study prior to data collection, and demographic information on
the students was not released by the university to the researchers.

The course used Java as the programming language and required
the students to complete nine programming homework assignments
and two timed exams (Table 1). The programming assignments were
designed to assess programming knowledge, while also providing

How do Students Prepare to Start Coding

Table 1: Homework assignments, topics, and exams.

o
g

Exam Topics

1 Java syntax, print statements
Conditionals/loops, variables, primitive types
Functions, array manipulation

Functions, string manipulation, ASCII encoding
Recursion

Object-Oriented, unit testing

OOP, bitwise operations, number systems

Linked nodes, unit testing

NN AU W N = O
N DD NN == = =

OOP, bitwise operations, number systems

students with practice opportunities for solving programming prob-
lems associated with the computing topics introduced in the course
(e.g., recursion, abstract data types). The course provided several
resources to students which collected their interaction data:

e Digital interactive textbook (Codio)?, that delivered lecture
notes as an interactive electronic textbook.

e Learner management system (LMS; Canvas)?, delivered pre-
and live-recorded lecture videos. The videos covered course
content and live coding sessions.

o Online help-seeking: students could access a Q&A platform
(24/7; Piazza)® and online office hours (OH) management
software that students could use to seek help from both
peers and/or instructor(s) at specific times.

o Automated feedback tool (Gradescope)* that automatically
graded and provided immediate feedback to students.

Depending on the assignment, students had a week or two (HWO,
HW?3) to complete each programming assignment. Students were
given an unlimited number of submissions prior to the assignment
deadline, and they received immediate feedback with each submis-
sion using an automated feedback tool. The last homework (HW9)
was removed from our analysis because it was a self-designed
project. While 301 students were enrolled in the course, some stu-
dents did not submit all assignments. Hence, the number of partici-
pants varied slightly across programming assignments.

4 DO STUDENTS PREPARE TO CODE AN
ASSIGNMENT, AND DO THEY PREPARE
MORE FOR DIFFICULT ASSIGNMENTS?

4.1 Methods

To address research question one, students’ engagement in pre-
coding activities was calculated based on their utilization of course
resources, specifically after the assignment was released, but be-
fore their initial engagement with the assignment in the IDE each
week. To measure when and how often students prepared for each

!https://www.codio.com/
Zhttps://www.instructure.com/canvas
3https://piazza.com/
4https://www.gradescope.com

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

assignment, we collected their interactions with multiple course
resources throughout the introductory programming course.

The number of students who used course resource platforms
across all programming assignments was collected. For students
who prepared, we calculated the number of days they used each
platform while preparing for each assignment. In particular, for
each student and homework assignment, we examined how often
a student used the Q&A and LMS platforms by summarizing the
number of 1) days the Q&A platform was used, 2) days the LMS
platform was used, 3) posts viewed on the Q&A platform, and
4) total minutes spent watching videos on the LMS platform. As
Table 2 shows, of the 301 students enrolled in the class, the majority
of students used the Q&A and LMS platforms across all assignments
(except for HWO0 where no students used the LMS platform). Due
to low OH and digital textbook usage, we narrowed our analysis to
only focus on Q&A and LMS data.

A 2-parameter item response theory (IRT; [7]) model was used
to determine assignment difficulty. IRT was used to calculate a dif-
ficulty parameter for each assignment (HW) based on the student’s
final grade (see results in [25]). Similar to platform usage, the as-
signments were ranked from the easiest to the most difficult based
on the difficulty estimates. Next, we examined the relationships
between students’ pre-coding activities and assignment difficulty.
The higher the difficulty estimate, the higher the ranking was for
that assignment (Table ??).

Last, a Spearman correlation examined associations between
difficulty rank and students’ pre-coding activities usage rank for
each assignment. A Benjamini-Hochberg [1] correction was ap-
plied to each correlation to limit the false discovery rate using the
"alpha.correction.bh’ package in R [20].

4.2 Results

Students who prepared to code allocated their time differently
across the platforms for each assignment. The majority of stu-
dents spent their time preparing to code using the Q&A forum and
LMS platform across assignments (except for HW0). These results
suggest that students typically prepare to code by engaging with
the Q&A and LMS platforms, but their selection of preparation
activities varied across the assignments.

In Table ??, we present the homework and the rankings of each
assignment, determined by the difficulty level and the average stu-
dent usage of the Q&A and LMS platforms prior to coding. As
illustrated, HWO0 was the least difficult assignment and had the
lowest ranking on all four pre-coding activity measures. This indi-
cated that students either did not use or used the Q&A and LMS
platforms the least often to prepare for HWO0.

The Spearman correlations found no significant associations
between assignment difficulty and students’ average use of the
Q&A and LMS platforms while preparing to code (ps > .05). Al-
though this relationship was marginally significant (r = .6, =
.013, p = .097), it is worth noting that a positive (moderate) corre-
lation was found between assignment difficulty and the number
of posts viewed in the Q&A. This finding suggested that students
who engaged in pre-coding activities, particularly viewing more
posts on the Q&A platform, tended to do so increasingly as the
difficulty of the programming assignment escalated. This partially

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

Table 2: Pre-coding Activities across homework assignments.

Q&A LMS OH Textbook
HW | n # n # n # n #

212 358 0 0 6 6 9% 34
263 1220 275 625 17 16 97 36
208 508 275 814 16 15 84 35
217 550 229 251 32 30 97 39
226 622 200 211 31 30 123 39
207 503 223 269 80 30 237 39
211 457 154 154 30 52 89 27
231 668 218 282 35 35 105 37
232 853 217 256 28 27 135 38

246 1021 232 606 121 62 199 38
: Number of students; #: Number of interactions.

SO 00 N O Uk W N = O

supported prior findings [25], where students prepared more before
they started coding the more difficult the assignment was.

5 DOES THE EXTENT OF PREPARING TO
CODE PREDICT WHEN STUDENTS WILL
START TO CODE A PROGRAMMING
ASSIGNMENT?

5.1 Methods

We calculated rank-based regression for each homework assign-
ment, to estimate whether engaging in pre-coding activities before
coding relates to the number of days students delay coding the
programming assignment. The number of days that students did
not code after the assignment was released was very right-skewed,
meaning that almost all of the students started coding their assign-
ment within 10 days after its release. As such, rank-based regression
was the appropriate method since it estimates the vector of coeffi-
cients in a general linear model. In rank-based regression, Jaeckel’s
dispersion function is used to minimize the error distance, instead
of Euclidean distance as with Least Squares in linear regression [19].

We used the "Rfit" package in R to calculate our models [14]
(data and code are available in Appendix A). For each assignment,
the four pre-coding measures (see Section 4.1) were used to predict
when students’ started to code a programming assignment. To
capture the full range of pre-coding activities across the course
resources, for each assignment, we included all students who have
worked on the assignment, including those who did not use any of
the platforms before starting to code. For students who did not use
Piazza or Canvas, a value of zero was imputed if any of the four
pre-coding activity measures were missing.

5.2 Results

As shown in Table 3, we found that other than HW3 and HW7, the
number of days students used the Q&A Piazza negatively predicted
when students started coding their assignment. This suggests that
the more days students spent using the Q&A platform, the earlier
they started to code the assignment. We also found that the more

Cloude, Zhang, Baker, & Fouh

often students viewed posts in the Q&A (except HW3) and videos
on the LMS was positively associated with starting to code the
assignment later after the release date, possibly indicating active
delay by students gathering information from posts on the Q&A.
For example, a student may read a lot of posts on the Q&A platform
for an assignment or topic if they were confused or struggling to
start the assignment before their questions were answered [24].

Similarly, we found the number of days students used the LMS
was not related to when they started coding the assignment. A
possible explanation could be that the LMS can be used in multiple
ways beyond preparing to code, such as using the platform for gen-
eral purposes like reviewing the syllabus. These findings support
our hypothesis that engaging in pre-coding activities, specifically
when students prepare for assignments with the Q&A platform,
was related to students’ coding start date. However, the extent of
delay varied based on the degree of students’ preparation and how
their preparation was measured (i.e., negative relationships for the
number of days using the Q&A versus positive relationships for the
number of posts viewed on the Q&A platform; 3. The inverse rela-
tionship between the two metrics and when coding started could
indicate a difference in how students are oriented to different goals
(e.g., approach vs. avoidance) and the learning strategies they use.
For instance, frequent but short visits on the Q&A platform were
correlated with starting to code earlier, whereas frequent and long
visits might indicate less-than-optimal SRL strategies.

Students may also spend more time reading posts on the Q&A
platform if they do not have an accurate sense of their knowledge
gaps and needs, and are thus unable to target specific topics. It is
also worth noting that the R? values in the models were moderate
for the analyses in Table 3. The highest R? value was 24% (HW5),
indicating 24% of the variability in when students started to code
was explained by pre-coding activities, suggesting other factors are
likely at play in explaining when students start to code.

6 DOES PREPARING TO CODE PREDICT
STUDENTS’ GRADES IN AN
INTRODUCTORY PROGRAMMING COURSE?

6.1 Methods

Similar to RQ2, we utilized rank-based regression to examine whether
pre-coding activities were related to students’ grades on the assign-
ment. Since the grades from each assignment were left-skewed
(due to an unlimited amount of resubmissions using the automated
feedback tool), with the majority of the students scoring a letter
grade A, grades were transformed into ranks to represent their
performance. The same set of students was included in this analysis
as in RQ2. For each assignment, students’ pre-coding activities were
used to predict their grade ranking on the assignment.

6.2 Results

For each model, the unstandardized coefficient and significance
level are reported. As shown in Table 4, the number of days stu-
dents used the Q&A platform positively predicted their HW grade
ranks for all assignments, except for HW2 and HW8. This positive
relationship indicated that the more days students used the Q&A
platform before they started to code, the higher their grade was

How do Students Prepare to Start Coding

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

Table 3: Predicting the degree of procrastination using pre-coding activity measures.

HW | Q&A LMS Q&APosts Videos Model Fit Indices
0 —26"* NA .03*** NA F=19.02,p < .0001, R? = .21
1 -17* -.09 .06™** 02%* F=10.03,p < .0001,R? = .13
2 —.24%* .19 .05%* .02%%* F =8.880,p < .0001,R? = .12
3 .05 .30 .03 01" F=790,p < .0001,R? = .11
4 —.23* -.05 .05%** .01%** F=6.39p< .0001,R? = .09
5 —-.18* .85 037" 02" F=18.49p < .0001,R? = .24
6 —.22%* .08 .05%** 0.01"** F=17.03,p < .0001,R? = .21
7 -.11 .99** .05%** 0.02"** F=17.12,p < .0001,R? = .21
8 | —.26" .02 125 0.01*** F=15.15,p < .001,R? = .19

*p < .05; %p < .01; **p < .0001; F statistics & p-values correspond to the Drop in Dispersion Test.

on the assignment. The lack of relationships between grades and
pre-coding activities for HW2 could be due to the nature of the
programming problem, which required students to implement a
physics equation correctly. In this way, many students were con-
fused by the physics equation instead of the programming topic.
HWS8 on the other end, was the last “assigned” homework. One of
the course grading policies dropped the lowest assigned homework
grade, as long as the student received a grade of at least 30% on all
HWs. Thus, many students did just enough work to earn 30% on
this last assignment (“who can blame them”).

Similar positive (strong) relationships were found between the
number of times students used the LMS platform and grade ranks,
but only for HW2, HW5, and HW7. A possible explanation for this
could be due to the fact that HW2, HW5, and HW?7 exposed students
to concepts (parameter passing, primitive values, objects, references,
etc.) that take practice and time to master, often requiring thorough
code tracing before achieving proficiency. Since the instructors
go over code examples during lectures, students visited the LMS
frequently to rewatch lecture videos while preparing for those HWs.

Interestingly, the number of times students viewed posts on the
Q&A platform was not related to HW grade ranks (ps > .05). A
possible explanation for this could be that simply viewing a post
on the Q&A platform did not ensure that the student had received
an answer to their question or addressed their need to prepare
prior to coding. Not all posts on the Q&A platform were created
equal, meaning some posts may have been more or less relevant to
programming topics and this may not have been helpful to students’
before starting a specific programming assignment. More research is
needed to determine the type and quality of the posts that students
viewed. For example, simply viewing posts may not be indicative
of actively delaying work to prepare for the assignment. Rather it
may be indicative of an ineffective strategy to improve the quality
of their code on the assignment. This could be due to the student a)
viewing low-quality posts on the Q&A, or b) adopting an ineffective
SRL strategy to prepare for learning by seeking out the content and
preparation needed to improve the quality of code.

Similar results were obtained for the time students prepared by
watching videos on the LMS. The minutes students watched videos
had no relationship with their code quality, with the exception
of HW7. There was a negative (weak) relationship between the

amount of time viewing videos on the LMS and HW7 grade rank.
This was surprising and did not support our hypothesis, where we
expected more time engaging in pre-coding activities would benefit
grades. Yet, there were no relationships or a negative relationship
between the time students viewed the videos on the lecture or live
coding session with the quality of their code. Moreover, if students
spent too much time watching lecture videos, then it was negatively
related to their grades, on some of the homework assignments.

This could be explained by the fact that students who needed
to rewatch the entire video were probably very confused about
the assignment compared to students who did not need to watch
longer. This could also indicate that the student did not necessar-
ily know what to look for in the video, based on their need to
prepare. In contrast to students who accurately identified their
knowledge gap, they could have fast-forwarded to the specific part
of the video that addressed their need to prepare. These results
partially supported our hypothesis: pre-coding activities across all
homework assignments would be positively related to performance
outcomes. Instead, we found that some preparation activities were
more beneficial than others.

7 DISCUSSION

The objective of this study was to examine the extent that students
prepared for coding assignments, such as their level of preparation
by utilizing course resources, e.g., digital textbook, online office
hours, Q&A forum, etc., and its relation to behavioral delay mea-
sure and grades in an introductory computer science (CS1) course.
Our first hypothesis, where we expected students to engage with
course resources prior to coding, and that students would engage
with course resources more often for difficult assignments, was
supported in RQ1. The results suggested that most students en-
gaged with course resources prior to coding, but they allocated
their time differently for varying programming assignments and
across multiple course resources. However, most of the time spent
preparing to code was by utilizing the Q&A forum and the digital
textbook. We also found a marginally significant, and moderate
positive correlation between assignment difficulty and the number
of posts viewed on the Q&A forum.

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

Cloude, Zhang, Baker, & Fouh

Table 4: Predicting homework performance (rank) using pre-coding activities.

HW | Q&A LMS Q&A Posts Videos Model Fit Indices’

0 7.51% 8.88 —.24 -.18 F=437p= 0019, R? = .06
1 13.93** 7.95 -.96 -.17 F=342p= .0095,R? = .05
2 4.43 29.89** .55 —.23 F=333p= 011, R% = .05

3 11.67* 20.98 -.14 .1 F=495p= .0007,R? = .07
4 15.49*** —1.49 —-.53 -.07 F=238,p=.0265, R%=.04

5 14.07*** 46.14™** —-.06 —.08 F=28.63p< .0001,R? = .11
6 11.03** 11.40 —0.78 -.13 F=2.74p =.0293, R% = 04
7 13.5%** 23.13* -.69 -21* F=17.29,p <.0001, R%= .04
8 5.39 15.04 —.44 12 F =257,p=.0383, R? = .04

*p < 0.05; " p < 0.01; **p < 0.0001; F statistics & p-values correspond to the Drop in Dispersion Test.

For RQ2, our second hypothesis was partially supported, where
we expected that the more often students engaged with course
resources prior to coding, would predict their extent of behavioral
delay in starting to code the assignment. The results showed that
the number of pre-coding activities students engaged in across
multiple course resources predicted their extent of behavioral delay
in starting to code sometimes, but not always. We found that the
extent of behavioral delay varied based on the student’s degree of
preparation and also how preparation was measured. Collecting
data on days spent using a course resource and the number of posts
viewed in the Q&A forum, for instance, revealed differences among
students, possibly due to differences in how they were oriented to
goals and learning strategy use.

Last, RQ3 partially supported our third hypothesis, where we
expected that students who engage with course resources prior
to starting the assignment would achieve better grades in the in-
troductory course. The results suggest that Q&A posts and videos
were not as useful for preparing to code an assignment. Instead,
we found a different pattern. When students actively delayed start-
ing to code the assignment by actively seeking help online in the
Q&A platform-going beyond mere viewing of posts, which is more
passive—this approach was associated with higher quality code for
most assignments. However, other pre-coding activities were not
beneficial to grades on the homework, such as the amount of time
watching videos on the LMS or viewing posts on the Q&A.

In sum, these findings advance our understanding of if, when,
and how students prepare to build programs and its relation to their
behavioral delay and grades in an introductory CS course. Some
pre-coding activities improve grades on programming assignments,
despite students’ delaying their work on starting assignments. How-
ever, not all instances of preparation may be strategic or effective.
It is important to note that for students to engage in effective prepa-
ration they must identify the task demands and accurately evaluate
their current knowledge base [23, 24]. From here, students can
strategically target materials or course resources that would allow
them to prepare to code.

Since the study was conducted in a course setting, the data col-
lected possess high ecological validity, as they were observed in
the natural context where learning to program occurs. This authen-
ticity increases the likelihood that our findings may generalize to

other CS classroom contexts, as they align closely with the reality
of teaching and learning experiences. We recommend educators
and researchers adopt multiple measures of behavior that go be-
yond a single delay measure to distinguish between students who
procrastinate vs. actively delay their work on assignments.

Future researchers may want to consider the role of goal ori-
entation and metacognitive accuracy on how students engage in
pre-coding activities. Collecting additional pre-coding activity data
(e.g., Stack Overflow) and conducting qualitative interviews may
provide a more comprehensive understanding of how students
prepare to code in introductory programming. Overall, this study
extends prior findings by providing a better picture of the assign-
ment completion life-cycle to CS educators and researchers. The
implications of this work may allow future work to better identify
when students procrastinate vs actively delay working on program-
ming assignments.

7.1 Threats to Validity

This work was limited in two ways: 1) students’ first interaction
with the IDE defined when they started coding; yet, it is possible that
they may have opened the IDE and not started to code until later;
and 2) IRT was used to determine assignment difficulty. Given that
students had unlimited submissions, utilizing their final grades on
assignments does not accurately reflect their initial grades. Instead,
their final grades were products of potentially multiple attempts
and adjustments with the automated feedback tool. In addition, it
is possible that some students delayed starting to code, not due
to procrastination, but other responsibilities outside of the course
(e.g., part-time work, hobbies, etc.).

8 ACKNOWLEDGMENTS

This study was supported by the National Science Foundation (NSF;
DUE-1946150). Any conclusions expressed in this material do not
necessarily reflect the views of NSF.

A ONLINE RESOURCES

Data, software (R script) for data processing, and the results are pub-
licly available at: https://github.com/SERI-CS/pre-coding-analysis/.

https://github.com/SERI-CS/pre-coding-analysis/

How do Students Prepare to Start Coding

REFERENCES

(1]

(2]

[11]

[12]

[13]

[14]

[15]

[16]

(17

(18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

Yoav Benjamini and Yosef Hochberg. 1995. Controlling the false discovery rate: a
practical and powerful approach to multiple testing. Journal of the Royal statistical
society: series B (Methodological) 57, 1 (1995), 289-300.

Susan Bergin, Ronan Reilly, and Desmond Traynor. 2005. Examining the role of
self-regulated learning on introductory programming performance. In Proceedings
of the first international workshop on Computing Education Research. 81-86.
Heeryung Choi, Philip H Winne, Christopher Brooks, Warren Li, and Kerby
Shedden. 2023. Logs or Self-Reports? Misalignment Between Behavioral Trace
Data and Surveys When Modeling Learner Achievement Goal Orientation. In
LAK23: 13th International Learning Analytics and Knowledge Conference. 11-21.
Jin Nam Choi and Sarah V Moran. 2009. Why not procrastinate? Development and
validation of a new active procrastination scale. The Journal of social psychology
149, 2 (2009), 195-212.

Angela Hsin Chun Chu and Jin Nam Choi. 2005. Rethinking procrastination:
Positive effects of" active" procrastination behavior on attitudes and performance.
The Journal of social psychology 145, 3 (2005), 245-264.

Danya M Corkin, L Yu Shirley, and Suzanne F Lindt. 2011. Comparing active
delay and procrastination from a self-regulated learning perspective. Learning
and Individual Differences 21, 5 (2011), 602-606.

Rafael Jaime De Ayala. 2013. The theory and practice of item response theory.
Guilford Publications.

Stephen H Edwards, Jason Snyder, Manuel A Pérez-Quifiones, Anthony Allevato,
Dongkwan Kim, and Betsy Tretola. 2009. Comparing effective and ineffective be-
haviors of student programmers. In Proceedings of the fifth international workshop
on Computing education research workshop. 3-14.

Anthony Estey and Yvonne Coady. 2016. Can interaction patterns with sup-
plemental study tools predict outcomes in CS1?. In Proceedings of the 2016 acm
conference on innovation and technology in computer science education. 236-241.
Eric Fouh, Wellington Lee, and Ryan S Baker. 2021. Nudging students to reduce
procrastination in office hours and forums. In 2021 25th International Conference
Information Visualisation (IV). IEEE, 248-254.

Andrew] Howell and David C Watson. 2007. Procrastination: Associations with
achievement goal orientation and learning strategies. Personality and Individual
Differences 43, 1 (2007), 167-178.

Viggo Kann and Anna-Karin Hogfeldt. 2016. Effects of a program integrating
course for students of computer science and engineering. In Proceedings of the
47th ACM technical symposium on computing science education. 510-515.

Kyung Ryung Kim and Eun Hee Seo. 2015. The relationship between procrasti-
nation and academic performance: A meta-analysis. Personality and Individual
Differences 82 (2015), 26-33.

John D. Kloke and Joseph W. McKean. 2012. Rfit: Rank-based estimation for
linear models,. The R Journal 4, 2 (2012), 57-64.

Juho Leinonen, Francisco Enrique Vicente Castro, and Arto Hellas. 2021. Does
the early bird catch the worm? Earliness of students’ work and its relationship
with course outcomes. In Proceedings of the 26th ACM Conference on Innovation
and Technology in Computer Science Education V. 1. 373-379.

Suzanne F Lindt, Danya M Corkin, and SI Yu. 2014. Using multiple methods
to distinguish active delay and procrastination in college students. American
International Journal of Contemporary Research 4, 2 (2014), 28-32.

Dastyni Loksa, Lauren Margulieux, Brett A Becker, Michelle Craig, Paul Denny,
Raymond Pettit, and James Prather. 2022. Metacognition and self-regulation in
programming education: Theories and exemplars of use. ACM Transactions on
Computing Education (TOCE) 22, 4 (2022), 1-31.

Joshua Martin, Stephen H Edwards, and Clfford A Shaffer. 2015. The effects of
procrastination interventions on programming project success. In Proceedings of
the eleventh annual International Conference on International Computing Education
Research. 3-11.

Joseph W McKean and Thomas P Hettmansperger. 2016. Rank-based analysis
of linear models and beyond: A review. Robust Rank-Based and Nonparametric
Methods: Michigan, USA, April 2015: Selected, Revised, and Extended Contributions
(2016), 1-24.

Michael Mogessie. 2023. alpha.correction.bh: Benjamini-Hochberg Alpha Correc-
tion. R package version 0.0.1.

James Prather, Brett A Becker, Michelle Craig, Paul Denny, Dastyni Loksa, and
Lauren Margulieux. 2020. What do we think we think we are doing? Metacogni-
tion and self-regulation in programming. In Proceedings of the 2020 ACM confer-
ence on international computing education research. 2-13.

Jason Wessel, Graham L Bradley, and Michelle Hood. 2019. Comparing effects of
active and passive procrastination: A field study of behavioral delay. Personality
and Individual Differences 139 (2019), 152-157.

PH Winne and AF Hadwin. 2008. The weave of motivation and self-regulated
learning. Erlbaum. 297-314 pages.

Philip H Winne and Nancy E Perry. 1998. Measuring self-regulated learning. In
Handbook of self-regulation. Elsevier, 531-566.

Jiayi Zhang, Taylor Cunningham, Rashmi Iyer, Ryan Baker, and Eric Fouh. 2022.
Exploring the Impact of Voluntary Practice and Procrastination in an Introductory

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

Programming Course. In Proceedings of the 53rd ACM Technical Symposium on
Computer Science Education-Volume 1. 356-361.

	Abstract
	1 Introduction
	2 Related Work
	3 Participants and Course Design
	4 Do students prepare to code an assignment, and do they prepare more for difficult assignments?
	4.1 Methods
	4.2 Results

	5 Does the extent of preparing to code predict when students will start to code a programming assignment?
	5.1 Methods
	5.2 Results

	6 Does preparing to code predict students' grades in an introductory programming course?
	6.1 Methods
	6.2 Results

	7 Discussion
	7.1 Threats to Validity

	8 Acknowledgments
	A Online Resources
	References

