Title: Predicting math identity through language and click-stream patterns in a blended learning mathematics program for elementary students.

Author 1: Scott A. Crossley
Department of Applied Linguistics/ESL
Georgia State University
25 Park Place, Suite 1500
Atlanta, GA 30303, USA
Email: sacrossley@gmail.com

Author 2: Shamya Karumbaiah
Penn Center for Learning Analytics
University of Pennsylvania
3700 Walnut St
Philadelphia, PA 19104
Email: shamya@upenn.edu

Author 3: Jaclyn Ocumpaugh
Penn Center for Learning Analytics
University of Pennsylvania
3700 Walnut St
Philadelphia, PA 19104
Email: jlocumpaugh@gmail.com

Author 4: Matthew J. Labrum
Imagine Learning
382 W Park Circle, Suite 100
Provo, UT 84604
Email: matthew.labrum@imaginlearning.com

Author 5: Ryan S. Baker
Graduate School of Education
University of Pennsylvania
3700 Walnut St
Philadelphia, PA 19104
Email: ryanshaunbaker@gmail.com
Abstract

Research that has examined relationships among mathematics success and student language patterns has typically focused on features of students’ language production such as linguistic sophistication, sentiment, and cognitive measures. There is also a small but growing body of research on how motivational and affective measures derived through survey data relate to mathematics success. Additionally, there is a wealth of knowledge demonstrating that click-stream data in on-line learning environments can predict success in a variety of disciplines including mathematics. However, these lines of research have not yet been brought together. This study builds on this prior research by leveraging natural language processing (NLP), click-stream analyses, and survey data to predict students’ mathematics success and math identity (namely, self-concept, interest, and value of mathematics). Specifically, we combine NLP tools designed to measure lexical sophistication, text cohesion, and sentiment with analyses of students’ click-stream data within an online mathematics tutoring system. We combine these data sources to predict elementary students’ success within the system as well as components of their math identity as measured through a standardized survey. Data from 147 students was examined longitudinally over a year of study. The results indicated links between math success and non-cognitive measures of math identity. Additionally, the results indicate that math identity was strongly predicted by click-stream variables and the production of language that was more lexically sophisticated and cohesive. In addition, significant variance in math identity was explained by affective and cognitive variables. The results indicate that NLP and click-stream data can combine to provide insights into non-cognitive constructs such as math identity.
Notes for Practice

Overview: Learning analytics research is beginning to focus on non-cognitive constructs that lend themselves to more immediate measures, including fine-grained measures of affective states and behavioral disengagement. More distal constructs have also been identified as important in the sociological and social-psychological research, including self-discipline (Duckworth & Seligman, 2005), social belonging (Walton & Cohen, 2011), and academic identities. Despite their known importance, there have been fewer publications that use student interactions (e.g., click-stream data and language production) to model these distal constructs.

Summary of contributions: This study examines how three constructs related to math identity—self-concept, interest, and value—are related to student behaviors within mathematics learning software. The study finds support for the notion that math identity constructs are correlated with math success and that language features in student texts are predictive of math identity constructs. The study finds some support for the use of click-stream variables to predict math identity, but these variables are generally less predictive. The study finds no evidence that math identity grows (or reduces) across the year of study analyzed here.

Key implications: This study provides a foundation for examining non-cognitive variables using language features along with click-stream variables that can assist practitioners and software designers in identifying socially-relevant math behaviors within on-line learning systems.
Introduction

As educational technology has become more complex, there has been increased research into the non-cognitive factors that shape and determine students’ choices. Over the last decade, researchers in learning analytics have paid close attention to non-cognitive constructs that lend themselves to more immediate measures, including fine-grained measures of affective states and behavioral disengagement, which have been modeled with click-stream data (i.e., interaction data from a learning system; Baker & Rossi, 2013; Baker & Ocumpaugh, 2014), physical and physiological sensor data (D’Mello & Kory, 2015), and language data (e.g., Dowell & Graesser, 2014). More distal constructs have also been identified as important in the sociological and social-psychological research, including self-discipline (Duckworth & Selignman, 2005), social belonging (Walton & Cohen, 2011), and academic identities, where a student values a particular academic subject as central to their self-concept, (Osborne & Jones, 2011). Despite their known importance, there have been fewer publications that use student interactions (e.g., click-stream data and language production) to model these distal constructs. Thus, they remain a promising area of research for those who are interested in exploring the degree to which such constructs can be modeled and supported within educational technologies.

One reason that constructs related to identity have been less thoroughly researched may be related to methodological challenges. Many studies of identity constructs use qualitative methods that lend themselves better to small-scale analyses (e.g., discursive analyses of sociological interviews). These methods make it difficult to obtain standardized and large-scale ground-truth data for use in quantitative analysis. Other studies use lengthy surveys, which can also prove challenging for large-scale research. To date, few studies have been published that successfully infer coarse-grained survey measures from fine-grained log-file data, suggesting
another potential issue: it may be difficult to model these mostly slowly-shifting constructs without first parsing them into meaningful units of analysis (e.g., the discovery with models approach used in Ocumpaugh et al., 2016).

Still, there are dimensions to identity constructs which can make it more amenable to learning analytics approaches. For example, while some researchers do examine highly general constructs like learner identity (Baxter & Haycock, 2014; Solomon, 2007), academic identity (Reveles, Cordova, & Kelly, 2004; Nassir & Saxe, 2003), or orientation toward school (Osterman, 2000), others narrow the scope of the construct they are trying to capture to domain-specific identities, like math identity or physics identity (Syed et al., 2011a). Likewise, while some research in math identity treats the construct very broadly (e.g., Cass, Hazari, Cribbs, Sadler, & Sonnert, 2011), other research on math identity decomposes the broad construct into finer-grained constructs such as students’ interest in mathematics (Renninger, 2009), mathematics self-efficacy/self-concept (Bong & Skaalvik, 2003; Pajares & Miller, 1994), and value of mathematics (Hitlin, 2003). These finer operationalizations make it possible to study math identity at scale through the use of shorter surveys—providing ground truth that can then be used to develop finer-grained models.

In this study, we examine how constructs related to students’ math identity—the degree to which mathematics is considered an interesting and valuable component of a student’s self-concept—might be modeled by using two different kinds of data involving their interactions within a mathematics software system. Specifically, we look at how their click-stream and language production data within a system can be used to model the math identity-related constructs of self-concept, interest, and value (operationalized using short, validated survey scales adapted from Ryan & Ryan, 2005). We also examine links between math identity
constructs and success within the system (defined as percentage of beginning level math problems answered correctly) and examine changes longitudinally by examining pre-test and post-test data simultaneously. We do so within the context of Reasoning Mind, a blended-learning system that is used by over 100,000 U.S. elementary students each year as part of their regular mathematics instruction. In doing so, we investigate how student language in terms of text cohesion, structural patterns, and lexical sophistication, along with their system interactions, and time (pre-test and post-test) can predict math identity constructs. Our goal is to provide statistical models that can be used by practitioners and software designers to identify math behaviors within on-line learning systems.

Math identity

Math identity, or the degree to which one considers oneself a “math person,” has become an area of interest among social scientists hoping to better understand what drives students to enter Science, Technology, Engineering, and Mathematics (STEM) fields (cf. Syed et al, 2011a, 2011b; Watt et al., 2017). The literature on math identity has focused on various ways that students might frame self-definitions. For instance, students with high math identity have been described as perceiving themselves as capable of doing mathematics (i.e., self-concept, Hitlin, 2003; Renninger, 2009) or as deliberately engaging in mathematics learning (i.e., demonstrating interest in mathematics, Renninger, 2009). Math identity has also been described as a way of orienting oneself toward a specific set of values (Hitlin, 2003). In other words, math identity is a form of self-definition, where students see themselves as the type of person who is interested in mathematics and values their success in that topic.

Modeling self-definitions may face challenges that more immediate constructs do not, particularly since they can also be susceptible to perceptual biases. For example, Bandura’s
research (1977) on self-efficacy discusses the role of self-attributional processes and suggests that a student’s cognitive appraisal (self-evaluation of ability) may be susceptible to a form of confirmation bias where the student ignores demonstrable achievements and improvements when they are contrasted with a previously established self-definition (Bandura, 1977). In addition to issues related to bias, other challenges may make it difficult to model identity-related constructs. For example, researchers who have constructed self-concept measures have worked to ensure that this construct is deliberately separate from student performance (Gottfried, 1985; Steinmayr & Spinath, 2009).

In this study, we operationalize math identity as mathematics self-concept, mathematics interest, and mathematics value. We do so based on research from two different paradigms which suggest that these constructs are related to identity and that, when broadly examined as non-cognitive constructs, can impact learning and motivation (Bandura, 1977; Cass et al., 2011; Eccles, 2009; Marsh et al, 2005; Ryan & Ryan, 2005; Syed et al., 2011b). In addition to their appearance in Bandura’s work, these constructs appear in Eccles’ (2009) expectancy value theory, where self-efficacy (among a variety of other factors) is hypothesized to influence both intrinsic value (interest) and utility value (the usefulness of the task). Specifically, we measure self-concept, interest, and value using self-report scales adapted from Ryan and Ryan (2005), who examined relationships between these constructs and conditions likely to trigger stereotype threat effects in mathematics performance. We discuss each of our mathematics constructs briefly below.

Mathematics Self-Concept

Research in self-concept overlaps considerably with self-efficacy, and in some cases the term “identity” is also used to refer to a construct similar to self-concept rather than the broader
conceptualization we adopt above. All three constructs refer to the mental schema a person uses when calculating their ability to negotiate different challenges in their lives. In general, social psychologists are more likely to refer to the concept of identity when discussing issues related to social processes, while they are more likely to use the term self-concept when discussing internal mental processes (Schlenker & Weigold, 1989).

In education research, self-concept and self-efficacy are often used to discuss domain-specific evaluations (e.g., self-concept in mathematics), and they are sometimes used synonymously. However, there are education researchers who draw a careful distinction between these two constructs, limiting the term self-efficacy to self-evaluations of specific tasks, often specifying that it must be measured directly after the task has been completed (Bong & Skaalvik, 2003; Pajares & Miller, 1994). For example, they might measure self-efficacy by administering a Likert scale immediately after each mathematics problem, asking students to indicate their confidence in each answer. In this research tradition, self-concept is a broader measure of ability within the domain, where its meaning more closely approaches its use among social psychologists, who define it as a theory of self (e.g., Epstein, 1973).

Self-concept is believed to operate below the level of consciousness, guiding people’s interpretations and expectations of external events (cf. Schlenker & Weigold, 1989), yet it may sometimes have contradictory effects. For example, in a situation where a student failed a task in a domain for which they have high self-concept, they might be more willing to attempt the task again than someone with low self-concept would be. Alternatively, they might interpret the task as flawed since their performance did not match the expectations created by their self-concept.

Both education researchers and social psychologists believe that self-concept develops from experience, so people with more shallow or limited experiences (novices) are likely to be
more susceptible to changes in self-concept (Epstein, 1973). However, other research suggests that developmental issues may differentially influence younger children’s self-concept in ways that contradict the development of self-concept in teenagers and adults. That is, constructs like self-concept often start high and show declines (rather than starting low and building with mastery experiences), and these declines sometimes occur as young as elementary school (Marsh et al., 1983) as students’ ability to self-evaluate matures (e.g., Stipek, 1981) and their self-concepts across different domains begins to diverge (e.g., math self-concept vs. verbal concept, as discussed in Marsh et al., 1985).

Academic self-concept tends to have a reciprocal positive relationship with achievement (Shavelson & Bolus, 1982). High self-concept can make students more likely to persist through difficult mathematics, leading to improved academic outcomes, while repeated failure could lower self-concept, particularly if a student did not have previous mastery experiences in mathematics to serve as a buffer.

Interest in Mathematics

Motivational research defines interest as the propensity to engage with a particular subject over time through both affective and cognitive components (Hidi & Renninger, 2006). Studies on the relationship of interest to self-concept have often found that self-concept drives intrinsic interest in a given subject (Bandura & Schunk, 1981; Sansone, Weir, Harpster, & Morgan, 1992), with theorists suggesting that as self-efficacy increases, students feel safer investing effort and attention in a particular topic (Roberts & DelVecchio, 2000).

Researchers have identified a number of simple strategies that appear to increase interest in the classroom, such as creating more challenging tasks for students or adding variety to the ways in which a student is asked to perform a task. However, others caution that some of these
strategies may only improve situational interest (e.g., Hidi & Renninger, 2006), suggesting that individual interest (intrinsic interest) is almost always self-driven, possibly because it seems to be fed by increased self-efficacy. Other researchers have found that interest is highly susceptible to contextual effects that vary from student to student (cf. Sansone et al., 1992). Researchers in career theory (e.g., Campbell & Hackett, 1986) have found that interest, like self-efficacy, is directly responsive to performance success and failure.

Interest is an important complement to self-concept when defining math identity, since its development is known to improve self-regulatory strategies (Hidi & Renninger, 2006) and other factors related to identity formation (Eccles, 2009). Students with stronger interest in a subject are more likely to persist when confronted with frustrating challenges (Fink, 1998; Hidi & Renninger, 2006; Prenzel, 1992), so that strengthening skills in mathematics is a self-feeding cycle. In particular, enjoyable or pleasant experiences with a subject are likely necessary to develop the persistence needed to become an expert in that subject (Eccles, 2009).

Value of Mathematics

Mathematics value is the degree to which a student thinks that mathematics is or will be useful to their life. Like self-concept and interest, value (utility) has been linked to motivation in a number of different research traditions. Domain-specific value (i.e., mathematics value) is thought to be highly influenced by prior knowledge, since limited knowledge can make it difficult for a student to connect the utility of a domain-specific task to more personal values (Renninger, 2009). Hitlin (2003) describes values as an enduring set of beliefs related to a person’s goal structure, suggesting that people feel most authentic when their behaviors align with their values. Gecas (2000) extends on this by introducing value-identities, which occur when a value becomes a core part of how a person defines themselves across different contexts.
Within the social psychology and education research, value has been shown to be influenced by self-concept (Chouinard, Karsenti, & Roy, 2007). In turn, much like interest, value positively influences the kind of goal-setting practices that increase effort and persistence (Chouinard et al., 2007). It also appears to influence interest (Frenzel et al., 2010), to the point that some researchers have used the terms interchangeably (Fredericks & Eccles, 2007) even when other research differentiates between them (Eccles, 2011).

Several researchers have found that social influences can influence value (perhaps more than self-concept or interest). In particular, parents can have a substantial effect on a child’s mathematics value (Chouinard et al., 2007; Frenzel et al., 2010; Harackiewicz, Rozek, Hulleman, & Hyde, 2012), and Renninger (2009) notes that, for younger learners, higher value of a domain is more likely when the values of teachers, parents, and peers align. Cumulatively, these findings suggest that value is often the last component of math identity to develop unless external influences (e.g., parents) are involved, but they also show that value can be more susceptible to social pressures or interventions.

Click-Stream Variables and Non-Cognitive Skills

Fine-grained click-stream data derived from students’ learning and learning contexts can be used to examine non-cognitive skills in learners (Beheshitha et al., 2016; Pardo, Han, and Ellis, 2016). It has also become increasingly easy to collect in computer-based learning systems (Greene, Muis, & Pieschl, 2010), making it a mainstay of learning analytics (Gasevic, Dawson & Siemens, 2015). Click-stream data has led to increased opportunities to explore human learning behaviors in ways that were difficult to make explicit before. While click-stream data may sometimes provide an incomplete picture of students’ experiences with a learning system, it can
provide real-time, fine-grained, and unobtrusive access to students’ behaviors (Knight, Buckingham Shum, & Littleton, 2013).

Click-stream data has proven a useful addition to studies that rely exclusively on self-report for research on student behaviors. For example, Winne and Jamieson-Noel (2002) studied undergraduate students’ self-reports about study tactics and observed that learners tend to overestimate their use of study tactics. Dupeyrat & Marine (2005) also report that behavioral measures of effort are more predictive of learning than are student self-reports. Other studies have reported that observed outcomes as operationalized through click-stream data are more strongly associated with achievement than self-reported values because click-stream data has lower biases than subjective reflections (Zhou & Winne, 2012). Thus, many researchers are beginning to combine click-stream data and self-reported measures to model non-cognitive skills instead of relying on one or the other (Beheshitha et al., 2016; Pardo, Han, and Ellis, 2016). In one study, McQuiggan et al., (2008) developed models of learner self-efficacy from university students’ click-stream data, using self-reports as ground truth. In another example, Lust et al. (2013) collected self-reports of self-efficacy and achievement goal orientations from undergraduate students and associated these variables with learning strategies identified through click-stream data.

While research related to these non-cognitive constructs are common in the context of mathematics education research, there have been relatively few efforts to model these constructs through click-stream data. Notably, these include models related to non-cognitive constructs in mathematics, including achievement goal orientation (Beheshitha et al., 2016) and self-regulation more generally (e.g., Pardo et al., 2016), while others have investigated math self-efficacy and interest (Lust et al., 2013). Many of these studies have focused on models related to
fairly immediate measures. For instance, early work relied on a variety of sensor data to model a constellation of related non-cognitive constructs in mathematics including confidence, frustration, excitement, and interest (Cooper et al., 2009). Other work has tried to model less-immediate measures of such constructs. For instance, Ocumpaugh et al., (2016) used click-stream data produced by students in middle school to predict measures of high-school STEM interest and self-efficacy. Similarly, click-stream data during middle school has been used to predict students' choice of eventual college majors (San Pedro et al., 2014). More recent work highlights the crucial role of school demographics on the relationship between clickstream variables in an online math tutor and students' motivational measures indicating the influence of broader students’ social context while modeling non-cognitive factors (Karumbaiah, Ocumpaugh, & Baker, 2019a).

Natural Language Processing (NLP) Variables and Non-cognitive Skills

NLP allows for the computational examination of the linguistic properties of text in an effort to understand natural language samples (e.g., students’ e-mails sent within an on-line tutoring system) and their relationships to practical items (e.g., math identity). Traditional NLP tools generally queried a text to better understand the level of complexity in terms of syntactic and lexical properties. Contemporary tools build on these features but also provide measurements of text organization and structure (e.g., cohesion) and sentiment analysis. NLP approaches have become more common in learning analytics studies in the last ten years, especially for adult learners, and are commonly used to better understand student writing (Allen, Likens, & McNamara, 2018; Botarleanu, Dascalu, Sirbu, Crossley, & Trausan-Matu 2018), text readability (Crossley, Skalicky, & Dascalu, in press), and student success in massive open online classes (MOOCs; Crossley, Paquette, Dascalu, McNamara, & Baker, 2016; Wen, Yang, & Rose, 2014a,
2014b) and other online learning environments (Crossley, Barnes, Lynch, & McNamara, 2017; Crossley, Karumbaiah, Labrum, Ocumpaugh, & Baker, 2019; Liu et al., 2019).

A few studies have examined how NLP features in student texts can be used to identify non-cognitive factors. However, much of this work focuses on adult learners. For instance, Moon, Potdar, and Martin (2014) used emotion terms and semantic similarity among participants to identify student leaders in two computer science MOOCs. Studies by Dascalu and colleagues examine how NLP features related to cohesion network analysis (CNA) can examine collaborative and participation patterns by students in online forums in MOOCs and other learning environments (Dascalu et al., 2018; Sirbu et al., in press). While less common, at least one study has examined math identity using NLP features in elementary children (Crossley et al., 2018). In this study, language features in student writing were used to model students’ math identity in an online mathematics tutoring system. Crossley et al. examined relationships between student language and survey measures of math identity and found that NLP features were able to predict a significant amount of the variance in each math identity variable. Specifically, students who used more positive language were more likely to have a positive math identity while those that produced more negative language were more likely to have lower math identity. Students with stronger math identity also used more respectful language, less power-related language, and language that was calmer. Students with stronger math identity were also more likely to produce more sophisticated words. Crossley et al. also reported weak to medium relationships between mathematics success in the system and math identity.

Current Study

The current study builds on Crossley et al. (2018), which used NLP tools to model end of the year math success (performance) within Reasoning Mind. Like the Crossley et al. study, we
model three non-cognitive constructs related to math identity: math interest, math value, and math self-concept. However, we build on the original study in two ways. First, we include a number of click-stream variables as predictors of these math identity constructs, thus combining dispositional, log data, and text data. Second, the data in the current study is longitudinal (including both start of year and end of year language, math performance, and survey measures), allowing us to examine if time is a predictor of math identity changes. By including these additional measures, we are able to examine differences across a year of study while also allowing us to better understand how individual variance, as determined by repeated participant data, can explain math identity beyond language and click-stream variables.

We use survey data to derive our math identity variables. To derive the language features for this study, we use NLP tools to extract language features from students’ emails to a virtual pedagogical agent within Reasoning Mind. As in the previous study, several NLP tools were applied, allowing us to extract language information related to text cohesion, lexical sophistication, and sentiment. Our click-stream data was extracted from the online tutoring data and focused on actions within the system, entries into various modes of the system, and temporal data related to time spent in those modes. From the system, we also collected a single variable of math success by averaging students’ success at answering math questions within the system. We collected data from students in two concurrent semesters (fall and spring) from students who typically used the system for several days each week, allowing us to track performance over time. Thus, in this study, we investigate three research questions:

RQ1. Are there relationships between math identity variables and mathematics success?
RQ2. Do math identity and mathematics success variables change over time (i.e., between pre- and post-year survey measures)?

RQ3. Are linguistic and click-stream features significant predictors of self-reported student traits related to mathematics value, interest, and self-concept over two semesters of study while controlling for student variance (i.e., pre- and post-year survey variance)?

METHOD

Reasoning Mind

We collected data from Reasoning Mind Foundations, a blended learning mathematics program for grades 2-5, distributed by Imagine Learning. Foundations students learn mathematics in an engaging, animated world at their own pace, while teachers use the system's real-time data to provide one-on-one and small-group interventions (Miller et al., 2015). The algorithms and pedagogical logic underlying Foundations (previously called Genie 2) are described in detail by Khachatryan et al. (2014), and a more thorough description of the system in general is given in Crossley et al. (2018).

Students using the Foundations curriculum start the system by entering in the City Landscape (see Figure 1). From here, they click on virtual buildings, each of which correspond to a different mode of use (see Table 1). Not all of the modes in Foundations are instructional (e.g., the Mailbox and My Place modes), and some modes are further divided into smaller modules and content areas, which vary in their instructional capacity (e.g., the Guided Study and Game Room modes).

Figure 1. City Landscape in Reasoning Mind
Table 1. Modes and modules that differentiate student experiences in Reasoning Mind.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Module</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>City Landscape</td>
<td></td>
<td>Main screen; the student selects a mode to enter from here and is taken here when exiting a mode.</td>
</tr>
<tr>
<td>Guided Study</td>
<td>Introduction</td>
<td>The main study mode. Each objective begins with an introduction and then the student works through the instructional content presented in the Theory module. A Notes Test is given to check the student's understanding of the theory before s/he proceeds to the Problems modules and finally ends with a Review.</td>
</tr>
<tr>
<td></td>
<td>Theory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Notes Test</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Review</td>
<td></td>
</tr>
<tr>
<td>Wall of Mastery</td>
<td></td>
<td>Additional practice mode; the student can select which content s/he wants to practice.</td>
</tr>
<tr>
<td>Office</td>
<td></td>
<td>Assignments created by the teacher are accessed in this mode.</td>
</tr>
<tr>
<td>Homework</td>
<td></td>
<td>Homework assigned to the student is accessed and submitted in this mode.</td>
</tr>
<tr>
<td>The Genie</td>
<td></td>
<td>The Genie's house; this is an entertainment mode where students can see the Genie and play games.</td>
</tr>
<tr>
<td>Mailbox</td>
<td></td>
<td>Email functionality mode.</td>
</tr>
<tr>
<td>Shopping Mall</td>
<td></td>
<td>The place to purchase items, which can be used in the My Place mode.</td>
</tr>
<tr>
<td>Game Room</td>
<td>Math Race</td>
<td>A two-player game in which students race to the finish line by answering problems quickly and correctly.</td>
</tr>
</tbody>
</table>
Division Game | A one-player game for practicing mental division calculation skills.
---|---
Multiplication Game | A one-player game for practicing mental multiplication calculation skills.
Dino Island | A one-player game for practicing proportions.
Riddle Machine | A one-player game for practicing mathematics problems of slightly higher difficulty than would be encountered in Guided Study or Wall of Mastery.
Library | Reference material (e.g., Glossary, Genie's Rules)
My Place | An entertainment mode in which the student may interact with purchased items (e.g., decorate a room, watch short movies, read books).

Students are able to send emails to the main character in the system, the Genie, a pedagogical agent who encourages students in their work throughout the system. The presence of the Genie and the ability to email it were implemented to increase both learning and enjoyment for students using the system (Khachatryan et al., 2014). Messages sent to the Genie are answered by Reasoning Mind employees who maintain a consistent persona by referencing an extensive biography of the Genie. The Genie is only able to reply to messages; emails to students are not initiated by the Genie.

Participants

The students sampled in this study came from a sample of 34,602 students who used *Foundations* from August 1, 2016 to June 17, 2017. The students were from 462 different schools located in 99 different districts, most of which were located in Texas. We included only those students that had attempted A-level math problems in both the fall and spring semester. We selected A-level problems because they are the lowest level math problems in the system and all students answer them, whereas B- and C-level problems are assigned less consistently. As an additional criteria for inclusion in our analyses, students included in this study needed to have written at least 50 words within the Genie email system (the minimum number of words needed
to develop a linguistic profile for the students). From the available student data, 1,036 students met these criteria. However, we only included those students that completed a math identity pre-test survey (given in the fall of 2016) and a math identity post-test survey (given in the spring of 2017) within the Genie email system. This subset of the data consisted of 147 students from 32 different schools in 11 different districts, all of which were in Texas.

Survey Data

The measures used in the present study consisted of three four-point scales adapted from Mingle (2013). The same survey was administered at the start and end of the 2016-2017 school year. The first was *mathematics self-concept*, which comprised five items that captured the degree to which the student sees them self as a “math person” (e.g., “I have always been good at math”). The second was *interest in math*, which consisted of four items that captured intrinsic curiosity or enjoyment of math (e.g., “How much do you like math?”). The last scale measured *value of math* and consisted of five items that captured the degree to which students find math to be useful (e.g., “How important is it to you to get good grades in math class?”). The survey scale was from 1 (“not at all important”) to 4 (“very important”). Please see the Appendix for the math identity survey questions used in this study. The Cronbach α values of these scales were 0.72, 0.69, and 0.72, respectively. The survey responses under each construct were aggregated by averaging the individual responses. Examples of aggregated e-mail chains sent by two fourth grade students (one classified as low and one as high math identity) are presented in Table 2

<table>
<thead>
<tr>
<th>Table 2. Example emails for Reasoning Mind Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classified as low math identity</td>
</tr>
</tbody>
</table>
I might dye my hair red or blue -Your bestie
Hi Genie! What did you do for Valentine's Day? Your coolest friend
Hi Genie! What are you gonna do for Saint Partick's day? Your Friend. Ps. you better wear green or i'll pinch you MWHAHAHAHAH
Dear Genie, I gave a bunch of candy to all my friends! Sadly, Its was raining. Your friend,

Dear Genie, I love Reasoning Minds. How did you come up with it?
Hello, Genie! | Genie, I have been sending messages and I never got a reply. What happened? Are you okay? Did you get sick or something? If you tell me why you were not answering, I will forgive you.
Genie, will you teach me how to do 2-digit by 2-digit, please? I keep on trying, but I just don’t grasp the concept.

Math Success
For the purpose of this paper, math success is operationalized as students’ average performance on A-Level problems. This definition was adopted because this is the only problem level that is completed by all students using Reasoning Mind. B-level and C-level problems, are not just more difficult, but they are used in different ways by different teachers. Some teachers assign them to all students, but other teachers either do not assign them at all or assign them only as challenge problems that students can optionally complete.

Genie Email Corpus
Our language sample for this analysis consisted of within-system email messages sent from the selected participants to the Genie. These messages were aggregated into a single file for each student, allowing us to more thoroughly investigate an individual student’s linguistic activity even in cases where the student sent a series of short messages. On average, students sent 8.73 (SD=10.2) messages to the Genie. The average length of aggregated messages to Genie was 816.2 (SD=1546.4) characters.

Data cleaning procedures were implemented in order to reduce the amount of noise in the data. First, non-ASCII characters were removed, as these could interfere with the NLP tools.
Second, all texts were automatically spell-checked and corrected using an open-source Python spelling correction library (autocorrect 0.3.0). After taking these preliminary data-cleaning steps, we removed random, non-mathematics symbols (e.g., “#”, “@”, and “&” but not currencies, percentages, timestamps, and ordinals). We also removed repeating words (e.g., “I love love love love you Genie”), excessively long character strings (e.g., “agneggenelepbaegbepwxzmew”), and strings with repeating characters, (e.g., “wooffffrrrrddd”) and mixed-characters (e.g., “$wofrd$”). Next, all non-dictionary, invalid words were removed from the data. We defined invalid words as those that could not be located within the synonym sets (synsets) in WordNet (Miller, 1995), and which also did not contain valid English phonotactic patterns. That is, a word was phonotactically invalid if it consisted of all consonants (always invalid), or if any pair of characters (digraph) in the word were invalid in the English language (e.g., “rlap” or “tsitl”). Finally, we removed all repeating, non-overlapping groups of words, (e.g., “this word this word this word”). Only word groups of lengths two, three, and four were removed by this approach.

Natural Language Processing Tools

We selected NLP features that measure lexical sophistication, text cohesion, syntactic complexity sentiment analysis, and topic similarity as predictors of math success. We did so based on suggestions found in Crossley et al. (2018) and other studies that have examined links between NLP features and math success (Crossley et al., 2017; Crossley et al., 2019). We used several NLP tools to calculate the selected linguistic features from our corpus of aggregated messages to the Genie, including the Tool for the Automatic Analysis of Lexical Sophistication (TAALES; Kyle, Crossley & Berger, 2017), the Tool for the Automatic Analysis of Cohesion (TAACO; Crossley, Kyle, & McNamara, 2016a), the Tool for the Automatic Analysis of
Syntactic Sophistication and Complexity (TAASSC; Kyle & Crossley, 2017), and the SEntiment ANalysis and Cognition Engine (SEANCE; Crossley, Kyle, & McNamara, 2016b). In addition, we developed specific indices related to topics commonly discussed with the Genie email system using Latent Dirichlet Allocation (LDA). The features are discussed briefly below.

TAALES. TAALES reports on a number of indices related to basic lexical information, lexical frequency, lexical range, lexical registers, word information features, and psycholinguistic variables including how long it takes to name word aloud. For instance, the tool uses the Contemporary Corpus of American English (COCA, Davies, 2008) to compute the number of texts in which a word appears (i.e., range) to examine the specificity of words or the proportion of common bigrams in a text. The tool also reports on a number of phonological, orthographic, and phonographic neighbors that words have to calculate how many near neighbors, based on sound or spelling, a word has. TAALES also reports on the strength of associations between words in the text to assess the expectancy of adjacent and nearby words.

TAACO. TAACO incorporates a variety of classic and recently developed indices related to text cohesion to provide linguistic counts for both sentence and paragraph markers of cohesion. For example, TAACO calculates type token ratio (TTR) indices (which measure word repetition), sentence overlap indices that assess lexical and semantic similarity between sentences or paragraphs, and a variety of connective indices including additive connectives (i.e., *and, moreover*).

TAASSC. TAASSC measures large- and fine-grained clausal and phrasal indices of syntactic complexity and usage-based indices of syntactic sophistication. Syntactic sophistication indices focus on verb-argument constructions and their frequency and/or verb and argument association strength.
SEANCE. SEANCE is a sentiment analysis tool that contains a number of pre-developed word vectors that measure sentiment, cognition, and social order. SEANCE also provides a negation feature and a part of speech (POS) tagger. Examples of affective variables reports by SEANCE include positive and negative polarity metrics. Cognition examples include words related to attention (how much attention a word demands), terms of overstatement (i.e., words of emphasis), and words related to the mental processes associated with problem solving.

Click-stream Data and Grade-level Information

Reasoning Mind logs the interaction of the students in the system at the level of specific student actions within the interface. The log data includes a number of fields such as student identification (student ID, classroom ID, etc.), timestamp, mode, module type, event type (login, enter mode, problem shown, submit, etc.), and problem information (content type, dataset, try number, input type, student answer, result, etc.). For each student, we extracted features based on the actions in the 27 modes (e.g., *City Landscape*), the actions within the 11 module types of *Guided Study* mode (e.g., *Introduction, Theory, Problems, Homework*) and 6 content types (i.e., A-, B-, and C-level problems as well as Theory, Notes Test, and Speed Game). For each mode, we extracted three kinds of features: (1) the sum of entries to the mode (e.g., number of times the student entered the *City Landscape* or *Guided Study*); (2) the sum of actions performed within the mode/module/content type (e.g., number of actions performed in *Problems* module type); (3) the total amount of time spent in each mode/content type (e.g., total time spent solving *A-level* problems). In addition, we calculated normalizing features (normalized against time in mode vs. time in system, etc.) and features measuring the number of hints, the number of virtual prizes purchased, and problem accuracies. In total, we mined 111 features from Reasoning Mind’s log data, consisting of 110 click-stream features and the student’s grade-level.
Statistical Analysis

Prior to analysis, all numeric scores were standardized. We used linear mixed effects (LME) models in R (R Core Team, 2018) using the *lme4* package (Bates, Maechler, Bolker, & Walker, 2015) to develop models of math identity scores over time (i.e., across the fall and spring semesters by using both the pre- and post-year survey measures survey scores). LME models were chosen because they offer statistical advantages over traditional repeated measures analyses of variance (RM ANOVAs). Specifically, LMEs account for both pooled and individual variance among students as opposed to just a pooled group mean; it does this by including students as random effects (i.e., assigning a unique intercept for each student, resulting in more accurate estimates based on individual student variation). These are reported as marginal R^2 and conditional R^2, which show the effects of fixed factors in explaining math identity constructs and the effects of variance from individual students on math identity constructs, respectively.

A unique LME model was generated for each math identity construct (i.e., three models). For each model, grade level, linguistics and affect features, and click-stream variables were treated as fixed effects (i.e., predictor variables), with second grade serving as the base-line for the grade level feature. We also included students as random effects to measure the effects of successive sampling, which can affect the strength of relationships between dependent and independent variables.

To help control for over-fitting, we removed a number of variables prior to analysis. First, we conducted correlations (where possible) between the dependent variables and the independent variables. Any independent variable that did not demonstrate at least a small relationship with the dependent variable ($r \geq 0.100$) was removed from the analysis. Next, we checked for multicollinearity between the remaining independent variables using variance
inflation factors (VIF) with a threshold set to 5 (i.e., high multicollinearity). All variables showing VIF above 5 were removed from the analysis and the remaining variables were used in the LME analysis. After variable pruning, we were left with 33 variables for modeling math self-concept, 32 for math interest, and 35 variables of math value. For each dependent variable, an initial LME model was run with all independent variables. After an initial model was constructed, we used a (backwards) stepwise variable selection technique to eliminate non-significant effects. The features remaining after stepwise variable selection process were used in the final models.

Several other statistical packages to aid in our construction and interpretation of our models. We used lmerTest (Kuznetsova et al., 2017) to derive \(p \)-values from the models and to perform automatic backward elimination of variables in the LME models and the MuMIn package (Barton, 2018) to obtain two measures of variance explained: a marginal \(R^2 \) measuring the variance explained by the fixed effects only, and a conditional \(R^2 \) measuring the variance explained by the fixed and random effects combined.

RESULTS

Descriptive Statistics of Data

Descriptive statistics for the math success and identity variables are presented in Table 2. The descriptive statistics demonstrate that all variable means were above potential midpoints indicating that students scored relatively high on the A-level math problems and judged themselves to have higher than average math self-concept, interest, and value. For comparison, the mean A-level problem accuracy for a sample of ~11,000 students from the same year was 0.795, which is slightly lower than the mean score for the sub-sample in this analysis (0.838). Math value showed tendencies towards being non-normally distributed with skewness above 2.
Table 3. Descriptive statistics for math success and identity variables.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Skewness</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math success (A-level problem accuracy)</td>
<td>0.838</td>
<td>0.105</td>
<td>-1.191</td>
<td>1.935</td>
</tr>
<tr>
<td>Math self-concept</td>
<td>2.946</td>
<td>0.704</td>
<td>-0.292</td>
<td>-0.722</td>
</tr>
<tr>
<td>Math interest</td>
<td>2.980</td>
<td>0.834</td>
<td>-0.614</td>
<td>-0.475</td>
</tr>
<tr>
<td>Math value</td>
<td>3.659</td>
<td>0.409</td>
<td>-1.865</td>
<td>4.588</td>
</tr>
</tbody>
</table>

Correlations between Math identity Constructs and Mathematics Performance

In order to examine associations across the three math identity constructs and to assess links between math identity and mathematics scores, Pearson correlations were computed for both pre-test and post-test score. For the purposes of this study, mathematics scores were limited to those derived from A-level mathematics problems within the Reasoning Mind system. The results (Table 3) indicate that all three math identity constructs (self-concept, interest, and value) were positively and significantly correlated with performance on A-level mathematics problems and with each other. Medium effects were reported for the relationship between mathematics performance and self-concept (0.308) while weak effects were reported for its relationship with interest (0.163) and value (0.181). Correlations between the math identity constructs themselves were also moderate (0.384–0.487), a result that aligns with their association in the literature.

Table 4. Correlations between mathematics performance and math identity variables

<table>
<thead>
<tr>
<th>Variables</th>
<th>A-level accuracy</th>
<th>Self-concept</th>
<th>Interest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-concept</td>
<td>0.308**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interest</td>
<td>0.163*</td>
<td>0.432**</td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td>0.181*</td>
<td>0.384**</td>
<td>0.487**</td>
</tr>
</tbody>
</table>

*LME Model for Mathematics Self-Concept

An LME model predicting math self-concept as the dependent variable reported significant main effects for one click-stream variable and three linguistic features. The model
reported a marginal R^2 of 0.062 and a conditional R^2 of 0.713, suggesting that the majority of the variance explained was in successive sampling of participants. Table 4 displays the estimates, percent of estimate, standard errors, t-values, and p-values for the fixed effects entered into this model.

<table>
<thead>
<tr>
<th>Fixed effect</th>
<th>Variable type</th>
<th>Estimate</th>
<th>% of estimate</th>
<th>Std. Error</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>(intercept)</td>
<td></td>
<td>0.000</td>
<td>0.071</td>
<td>0.000</td>
<td>1.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Time in A-level problems</td>
<td>CS</td>
<td>-0.189</td>
<td>0.398</td>
<td>0.047</td>
<td>-4.022</td>
<td>0.000</td>
</tr>
<tr>
<td>Additive connectives</td>
<td>TAACO</td>
<td>0.097</td>
<td>0.203</td>
<td>0.042</td>
<td>2.307</td>
<td>0.022</td>
</tr>
<tr>
<td>TTR (adjectives)</td>
<td>TAACO</td>
<td>-0.096</td>
<td>0.202</td>
<td>0.043</td>
<td>-2.244</td>
<td>0.026</td>
</tr>
<tr>
<td>Word range (COCA news)</td>
<td>FW TAALES</td>
<td>0.094</td>
<td>0.197</td>
<td>0.042</td>
<td>2.243</td>
<td>0.026</td>
</tr>
</tbody>
</table>

FW = function words; CS = click-stream

In general, the click-stream effects indicate that students that had higher self-concept spent less time solving A-level mathematics problems. Linguistically, students that had higher self-concept used more additive connectives and used more general function words (those found in a greater range of texts), results that are associated with more accessible text. These students also repeated more adjectives in their messages to the Genie, a pattern that is typical of narrative writing (Crossley, Kyle, & McNamara, 2012).

LME Model for Mathematics Interest

An LME model predicting math interest as the dependent variable reported significant main effects for one click-stream variable and six linguistic features. The model reported a marginal R^2 of 0.116 and a conditional R^2 of 0.637, suggesting that the majority of the variance explained was in successive sampling of participants. Table 5 displays the estimates, percent of estimate, standard errors, t-values, and p-values for the fixed effects entered into this model.

<table>
<thead>
<tr>
<th>Fixed effect</th>
<th>Variable type</th>
<th>Estimate</th>
<th>% of estimate</th>
<th>Std. Error</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>(intercept)</td>
<td></td>
<td>0.000</td>
<td>0.071</td>
<td>0.000</td>
<td>1.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Time in A-level problems</td>
<td>CS</td>
<td>-0.189</td>
<td>0.398</td>
<td>0.047</td>
<td>-4.022</td>
<td>0.000</td>
</tr>
<tr>
<td>Additive connectives</td>
<td>TAACO</td>
<td>0.097</td>
<td>0.203</td>
<td>0.042</td>
<td>2.307</td>
<td>0.022</td>
</tr>
<tr>
<td>TTR (adjectives)</td>
<td>TAACO</td>
<td>-0.096</td>
<td>0.202</td>
<td>0.043</td>
<td>-2.244</td>
<td>0.026</td>
</tr>
<tr>
<td>Word range (COCA news)</td>
<td>FW TAALES</td>
<td>0.094</td>
<td>0.197</td>
<td>0.042</td>
<td>2.243</td>
<td>0.026</td>
</tr>
</tbody>
</table>

FW = function words; CS = click-stream
Only one click-stream feature was included in the interest model. Students who had higher interest entered their My Place rooms more often to store and access their purchased virtual prizes. Two sets of linguistic features were included in the interest model. Cognitively and affectively, students with higher interest scores used fewer problem-solving and overstatement term coupled with more positive terms. This indicates that these learners used a greater number of positive words, fewer words of emphasis, and fewer words that were related to the mental processes associated with problem solving. In terms of linguistic structures, students with higher interest scores used words with fewer phonographic neighbors (and indication of greater lexical sophistication) and a greater proportion of expected bigrams (an indication of producing expected structural pattern). Students with higher interest scores also showed higher standard deviations in the strength of associations between verbs and other words, which indicates that these students used phrases that demonstrated a greater variety of association strength (i.e., demonstrated greater phrasal knowledge).

LME Model for Mathematics Value

<table>
<thead>
<tr>
<th>Fixed effect</th>
<th>Variable type</th>
<th>Estimate</th>
<th>% of estimate</th>
<th>Std. Error</th>
<th>(t)</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(intercept)</td>
<td></td>
<td>0.000</td>
<td>0.069</td>
<td>0.000</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>Phonographic neighbors CW</td>
<td>TAALES</td>
<td>-0.140</td>
<td>0.156</td>
<td>0.050</td>
<td>-2.817</td>
<td>0.005</td>
</tr>
<tr>
<td>Problem solving words</td>
<td>SEANCE</td>
<td>-0.136</td>
<td>0.152</td>
<td>0.058</td>
<td>-2.366</td>
<td>0.019</td>
</tr>
<tr>
<td>Overstatement words</td>
<td>SEANCE</td>
<td>-0.131</td>
<td>0.147</td>
<td>0.054</td>
<td>-2.446</td>
<td>0.015</td>
</tr>
<tr>
<td>Proportion of bigrams (COCA magazine)</td>
<td>TAALES</td>
<td>0.125</td>
<td>0.140</td>
<td>0.054</td>
<td>2.305</td>
<td>0.022</td>
</tr>
<tr>
<td>Number of entries to My Place</td>
<td>CS</td>
<td>0.125</td>
<td>0.140</td>
<td>0.057</td>
<td>2.213</td>
<td>0.028</td>
</tr>
<tr>
<td>Positive terms (Hu Liu norms)</td>
<td>SEANCE</td>
<td>0.122</td>
<td>0.137</td>
<td>0.048</td>
<td>2.543</td>
<td>0.012</td>
</tr>
<tr>
<td>Word associations (delta p verb cue)</td>
<td>TAALES</td>
<td>0.114</td>
<td>0.128</td>
<td>0.047</td>
<td>2.451</td>
<td>0.015</td>
</tr>
</tbody>
</table>

CW = content words; SD = standard deviation; CS = click-stream
An LME model predicting math value as the dependent variable reported significant main effects for cognitive and linguistic features, but no click-stream variables were significant. The model reported a marginal R^2 of 0.085 and a conditional R^2 of 0.567, suggesting that the majority of the variance explained in successive sampling of participants. Table 6 displays the estimates, percent of estimate, standard errors, t-values, and p-values for the fixed effects entered into this model.

Table 7. LME model predicting Math Value

<table>
<thead>
<tr>
<th>Fixed effect</th>
<th>Variable type</th>
<th>Estimate</th>
<th>% of estimate</th>
<th>Std. Error</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>(intercept)</td>
<td></td>
<td>0.000</td>
<td>0.070</td>
<td>0.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>Semantic overlap between sentences (LSA)</td>
<td>TAACO</td>
<td>0.173</td>
<td>0.305</td>
<td>0.053</td>
<td>3.296</td>
<td>0.001</td>
</tr>
<tr>
<td>Word naming latencies standard deviations (FW)</td>
<td>TAALES</td>
<td>-0.134</td>
<td>0.236</td>
<td>0.050</td>
<td>-2.694</td>
<td>0.008</td>
</tr>
<tr>
<td>Attention words</td>
<td>SEANCE</td>
<td>0.145</td>
<td>0.255</td>
<td>0.050</td>
<td>2.906</td>
<td>0.004</td>
</tr>
<tr>
<td>Construction frequency types (COCA fiction)</td>
<td>TAASSC</td>
<td>0.116</td>
<td>0.204</td>
<td>0.048</td>
<td>2.417</td>
<td>0.016</td>
</tr>
</tbody>
</table>

FW = function words; LSA = Latent Semantic Analysis;

Linguistically, students who had higher scores for mathematics value produced text that was more semantically cohesive and produced more frequent syntactic constructions (i.e., more frequent verb argument constructions) indicating greater coherence between sentences and more frequent constructions that should make a message easier to read. The function words they produced also showed lower variance in word-naming scores, a timing measure that indicates that the students were producing fewer words at both the easy and more sophisticated ends of the extreme. In terms of cognitive variables, students with higher mathematics value scores used more attention words, a category operationalized as how much cognitive attention a word demands.

Discussion
The purpose of this study was to examine links between language and click-stream variables in an educational software system for mathematics and three components of math identity, as measured by student survey responses. In addition, the study examined links between math identity variables and success within the system. At least one previous study had examined math identity using language features using a cross-sectional data analyses (Crossley et al., 2018) and several others have examined the relationship between click stream data and math identity (Slater et al., 2018; Karumbaiah et al., 2019a, 2019b). The current study builds on these studies modeling these constructs using a combination of click-stream data and language data and looking at changes in math identity across the academic school year.

Overall, we find similarities across math identity constructs as reported by correlations among the variables. We also find small to medium correlations among the math identity variables and mathematics success, with self-concept showing the strongest overlap with within-system mathematics problem solving. Linguistically, all math identity variables were at least partially predicted by lexical sophistication features (e.g., those identified by TAALES). Additionally, cohesion features (e.g., those identified by TAACO) were significant predictors in models of value and self-concept while language features related to sentiment and/or cognition (e.g., those identified by SEANCE) were significant predictors in models of value and interest.

The patterns reported in our linear mixed effects (LME) models provide a language profile for students with higher self-reported math identity. Specifically, these students produce more sophisticated words (i.e., words with fewer phonographic neighbors), but the range of sophistication for their function words was lower (i.e., words with lower variance in word naming speeds). They also produce text that is more cohesive, as demonstrated by a higher rate of overlap of semantic ideas, the use of more connectives, and a greater repetition of words.
These students also followed expected structural patterns (e.g., patterns found in large scale language corpora produced by proficient adult writers) including the production of less specific function words, more expected bigrams, and more frequent verb argument constructions. In terms of sentiment and cognition variable, students with greater math identity used more positive terms, fewer words related to problem solving, and fewer words indicating emphasis and cognitive attention.

Fewer click-stream features were included in the models and, in some cases (math value), no click-stream features were significant predictors of math identity constructs. It might seem counter-intuitive at first that these features indicated that more successful students were spending less time working A-level problems (for self-concept) and more time in their virtual rooms (interest). However, less time in A-level problems means that students completed these more basic questions more quickly and were able to spend more time in other areas of the system, including their virtual rooms.

One limitation of this work is that the associations found in the LME models are relatively weak. As the marginal R^2 values show, the language and click-stream features explained between 6% and 12% of variance in the math identity constructs. A larger portion of the variance (48% and 68%) was explained by random variance associated with the participants, much of which is likely the result of individual differences among the students.

Additionally, as reported in the LME models, time (fall pre-test and spring post-test) was not predictive of self-reported math identity variables, indicating no substantial links between math identity and time among the students in our sample (i.e., no longitudinal relationship) when time was co-varied with click-stream and linguistic features. To examine if differences existed between the math identity variables as a function of time, post-hoc paired t-tests were conducted.
for each variable (self-concept, interest, and value) and are reported here. The post-hoc analyses found no significant differences ($p > 0.05$) as a function of time for any of the variables. These results are encouraging, since it may be normal to see decreases in self-concept during this developmental phase (Marsh et al., 1984; Stipek, 1981; Marsh, 1986). Instead, these students seem to be maintaining relatively high values, which might suggest that Reasoning Mind is providing students with effective metacognitive support.

In the absence of time effect, our findings provide a greater understanding of how language and click-stream variables interact with math identity constructs and provide a pathway for future analyses. We discuss each model in turn below as well as discuss potential explanations for the variance explained by the participants themselves.

Mathematics Self Concept

The first model we constructed was for self-concept, defined as a broad measure of confidence in one’s mathematics ability that is related to one’s theory of self. Our click-stream and language features explained 6% of the variance, indicating a weak correlation with self-concept while participant repetition explained over 60% of the variance (i.e., the successive measurements of participants was strongly correlated with their survey scores)

The strongest predictor in the LME model was time spent in A-level content; however, the coefficient was negative, indicating that students who spent less time in A-level content had higher self-concept. This indicates that students with greater self-reported ability spent less time in lower-level problems. This is also supported in the correlation analysis, which demonstrated medium relationships between self-concept scores and success in A-level content.

In terms of language use, students with higher self-reported self-concept produced text that had more cohesive features (i.e., additive connectives), tended to repeat adjectives, and used
function words that were less specific (i.e., commonly used across texts). These linguistic features provide a profile of higher self-concept students as those that produce language that is more cohesive and easier to process. This may indicate that these students with higher self-concept (i.e., theory of self) produce emails that are more accessible/readable.

Mathematics Interest

Our second model explored math interest, which can be defined as the propensity to engage with a particular subject over time, with both affective and cognitive components. Like our self-concept model, the greatest amount of variance (62%) was explained by the random factor of participant (i.e., successive sampling). The fixed factors in the model explained around 12% of the variance in the math interest scores indicating a medium effect size.

From a lexical perspective, students with higher interest used more sophisticated words, as demonstrated by their use of words with fewer phonographic neighbors and words with a greater range of associations (indicating knowledge of more potential associations). At the same time, these students produced more bi-grams that are commonly found in language, which suggests that they had knowledge of a greater variety of phases than students that self-reported lower math interest scores. Thus, linguistically, these students produced more sophisticated words within expected lexical frameworks.

Sentiment and cognition variables were also significant predictors of math interest. Specifically, students with higher math interest used more positive terms and fewer problem-solving and overstatement terms. These findings indicate that students with higher math interest were more positive in general when interacting with Genie and likely did not ask the Genie for problem solving help or overstate issues by using emphatic words. Thus, these students likely sought less content help from the Genie.
Lastly, students with higher math interest spent more time in *My Place*, which is a space dedicated to leisure and entertainment where students can furnish and redecorate a room, read books, or watch movies. We interpret this as indicating that students with higher math interest were more likely to have earned the points required to indulge in the activities related to this virtual space.

Math Value

Our third model examined links between language and click-stream variables and math value, which can be defined as the degree to which a student thinks that mathematics is or will be useful to their life. The model for math value explained about 9% of the variance based on language features alone (i.e., no click-stream variables were included), a weak effect to medium effect size.

The strongest predictor of math value was semantic overlap between sentences, indicating that students with higher math value produced text that was more cohesive. These students also used more words that led to cognitive attention demonstrating an implicit use of words that garner interest. These students also showed less variety in their production of easy and difficult words (in terms of naming response times) indicating the ability to produce both less and more sophisticated words. Lastly, these students used more frequent verb argument construction types (i.e., more common syntactic structure). In general, this provides a language profile of students with higher math value as those that produce messages to the Genie that are more cohesive and easier to process (i.e., more common syntactic constructions and less variety in word difficulty).

General Trends
Overall, the three models begin to converge on a student with higher math interest as a student that writes more cohesively (i.e., greater overlap of ideas and greater use of cohesive features) and tends to write in expected patterns (i.e., more expected bi-grams, more general terms, and the use of more frequent verb-argument constructions). In addition, these students use more sophisticated words, but don’t necessarily use a greater variety of sophisticated words. This finding indicates that these students have begun to develop patterns of text cohesion that are common in elementary students (Bereiter & Scardamalia, 1987; Berninger, Fuller & Whitaker 1996) as well as beginning to norm their writing patterns to that of more proficient English writers. Thus, these students may be converging on the probabilistic language trends found in proficient writers, while students with lower math identity may not have acquired or noticed these patterns. Noticing these patterns may be related to general abilities to process information and extract information and this general ability may inform mathematics ability as well, predicting the significant correlations we see between mathematics success and math identity variables. However, more and different data, such as general tests of cognition, is needed to test these assumptions.

Practice and Policy Implications
The models constructed here provide practitioners and software designers with guideposts to begin identifying behaviors (linguistic and otherwise) within online learning systems that may indicate whether or not a student has high or low math identity. Combined with work previously presented on these issues (Crossley et al., 2017, 2018, 2019; Karumbaiah et al., 2019a, 2019b; Slater et al., 2018), these models identify a range of features that might help to identify students who are most in need of support. Currently, the findings suggest that low-level linguistic patterns (e.g., those associated with the use of function words, connectives, TTR, lexical sophistication,
and affect) and high-level linguistic patterns (semantic similarity and verb-argument constructions) may be stronger predictors of math identity than most click-stream data, which might be particularly useful information for learning systems that are unable to get students to complete surveys of math identity, but still wish to identify those students who are in the best need of support.

The weaker performance of the click-stream variables is unexpected, but given the contrary effects that self-concept might have on behaviors and the developmental changes in identity that students are learning to manage, these weak associations are not entirely surprising. That is, if students who suffer from low math identity respond differently in their interactions with the system, these kinds of behaviors will be more difficult to cleanly classify. This result is one that practitioners and designers of learning systems should be aware of if they are hoping to support the development of stronger math identity among their students.

More research is needed to improve these models, and one obvious way forward is to revisit previous research on the demographic effects on the construction of math identity. In addition to the early work on how self-definitions known to vary by gender, as in Bem’s (1974) research, recent work shows that school-level differences in demographics may influence whether the students with high or low math identity are most likely to make use of system help-features (Karumbaiah et al., 2019). As language, like help-seeking, is culturally-influenced, such explorations could help us to improve these models.

Conclusion

This study examines how three constructs related to math identity—self-concept, interest, and value—are related to student behaviors within mathematics learning software. We find support for the notion that math identity constructs are correlated with math success as well as
support that language features in student texts are predictive of math identity constructs. We find some support for the use of click-stream variables to predict math identity, but these variables are generally less predictive. Interestingly, we find no evidence that math identity grows (or reduces) across the year of study analyzed here. It may be that changes in math identity are incremental and longer frames of time are necessary to see changes. Alternatively, it could be that the experience of using this learning system weakens the drop in math identity often seen in young learners.

This study provides a foundation for examining non-cognitive variables using language features along with click-stream variables that can assist practitioners and software designers in identifying socially-relevant math behaviors within on-line learning systems. While the current analysis explained only a small amount of the variance, we take solace in the notion that the variance explained was significant and meaningful in terms of effect sizes. We presume that with different metrics of math interest that are not self-reported, more advanced language features, and the inclusion of individual differences on the part of participants we may be able to explain a greater amount of variance in future studies.
Acknowledgments

This research was supported in part by NSF 1623730. Opinions, conclusions, or recommendations do not necessarily reflect the views of the NSF. We would like to thank Tess Carithers, Leigh Mingle, Stefan Slater, and Victor Kostyuk for early work on this project that helped lead to this study. We would also like to thank the many staff members of Reasoning Mind who helped with data collection and to our anonymous reviewers for their very thoughtful assistance. Any mistakes are, of course, our own.
References

Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1-9,

Appendix

Math Identity Survey Questions

Self-Concept

1 How are you doing in math this year?
 Bad Not good Good Great

2 Is math harder for you than subjects like reading or science?
 A lot harder A little harder A little easier Much easier

3 Are you better at math than most of the other kids in your class?
 Not as good Almost as good A little better A lot better

4 I have always been good at math.
 Not true Somewhat true Mostly true Very true

5 I have always been smart.
 Not true Somewhat true Mostly true Very true

Interest

6 Math is one of the most important subjects to me.
 Not at all important Not that important Important Very Important

7 I find working on math assignments
 Interesting Somewhat Interesting Somewhat boring Boring

8 How much do you like math?
 Hate Dislike Like Love

9 Compared to other things you learn in school, how much do you like math?
 Much less A little less A little more A lot more
Value

10 How important is it to you to get good grades in math class?
 Not at all important Not that important Important Very Important

11 In math, it is most important to me to learn the math my teacher teaches.
 Not at all important Not that important Important Very Important

12 Doing well in math is important to me.
 Not at all important Not that important Important Very Important

13 It is important to me to be able to solve math problems.
 Not at all important Not that important Important Very Important

14 If I practice, I can change how good I am at math.
 Not true Somewhat true Mostly true Very true