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ABSTRACT 

In recent years, student modeling has been extended from 

predicting future student performance on the skills being learned 

in a tutor to predicting a student’s preparation for future learning 

(PFL). These methods have predicted PFL from a combination of 

features of students’ behaviors related to meta-cognition. 

However, these models have achieved only moderately better 

performance at predicting PFL than traditional methods for latent 

knowledge estimation, such as Bayesian Knowledge Tracing. We 

propose an alternate paradigm for predicting PFL, using 

quantitative aspects of the moment-by-moment learning graph. 

This graph represents individual students’ learning over time and 

is developed using a knowledge-estimation model which infers 

the degree of learning that occurs at specific moments rather than 

the student's knowledge state at those moments. As such, we 

analyze learning trajectories in a fine-grained fashion. This new 

paradigm achieves substantially better student-level cross-

validated prediction of student’s PFL than previous approaches. 

Particularly, we find that learning which is spread out over time, 

with multiple instances of significant improvement occurring with 

substantial gaps between them, is associated with more robust 

learning than either very steady learning or learning characterized 

by a single “eureka” moment or a single period of rapid 

improvement. 

Keywords 

Moment-by-moment learning graph, preparation for future 
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1. INTRODUCTION 
In recent years, there has been increasing emphasis in learning 

sciences research on helping students develop robust 

understanding that supports a student in achieving preparation for 

future learning (PFL) (cf. [9,15,17,26]), with evidence suggesting 

that differences in the design of educational experiences can 

substantially impact PFL [11,28]. Multiple approaches have now 

been found to be successful at supporting PFL. For example, 

learning-by-teaching when implemented with the use of 

“teachable agents”, computer characters that the student have to 

teach during the learning process, has been shown to support PFL 

[11,26,28]. Another approach shown to support PFL is the use of 

invention activities, during which students are asked to “invent” 

representation of a given problem (e.g., variance of a data set) 

[9,25-26].  

Given the existence of methods that can support PFL, there is 

increasing potential to enhance individualization within 

computer-based learning environments to optimize not just 

learning of the material being taught (cf. [10,12,24]), but PFL as 

well. However, individualization of this nature depends on 

student models that can effectively infer PFL.  

In the last two years, approaches that can infer PFL and other 

forms of robust learning have begun to emerge, but these 

approaches are still in their early stages, and are only modestly 

better than simply assessing student knowledge. In specific, 

models that leverage data on metacognitive and motivational  

aspects of student behavior (e.g., off-task, help-avoidance) have 

achieved cross-validated correlations about 0.05-0.1 higher than 

classical knowledge models (e.g. Bayesian Knowledge Tracing) to 

both PFL and transfer tests [4-5]. In addition, retention (another 

aspect of robust learning) has been effectively predicted using 

inferences of memory decay during periods of non-practice (e.g. 

forgetting; [16,29]). 

In this paper, we propose an alternate method for predicting PFL 

more precisely than the meta-cognitive/motivational behavior 

approach proposed in [4]: using quantitative aspects of the 

Moment-by-Moment Learning Graph. Similar to the classic 

learning curve (cf. [19,22]), a Moment-by-Moment Learning 

Graph (MBMLG) represents the probability that learning has 

occurred at a specific moment [3], for a given student and a given 

Knowledge Component (KC)/skill, at each step of the learning 

process. These probabilities are calculated based on a machine 

learned model that smoothes probabilities calculated using the 

probability that the student has learned the skill up to the point of 

a specific step, and the probability of their future actions given the 

probability that they learned the skill at that problem step. 

Earlier work (discussed in greater detail in Section 3.2) suggests 

that visual interpretations of the patterns of the MBMLG correlate 

to PFL [6]. This earlier work used human coders to interpret the 



visual characteristics of the MBMLG. In this work, we study 

whether an automated approach – based on quantitative analysis 

of features of the MBMLG – inspired by this earlier work can 

improve the prediction of PFL. 

2. DATASET 
We use attributes of the form of individual student’s MBMLG to 

predict student preparation for future learning. We do so in a 

combined data set from three studies, in total comprising 181 

undergraduate and high-school students who used an intelligent 

tutoring system to learn Genetics. The students enrolled in 

Genetics courses at Carnegie Mellon University, or in high school 

biology courses in Southwestern Pennsylvania. 

Study 1 (College Undergraduates, Three-Factor Cross). 72 

undergraduates enrolled in a Genetics course or in an Introductory 

Biology course at Carnegie Mellon University were recruited to 

participate in the study for pay, at a point in the semester where 

the tutor software was relevant to their classroom learning. The 72 

students completed a total of 22,885 problem solving attempts 

across a total of 10,966 problem steps in the tutor. 

Study 2 (College Undergraduates, Gene Interaction). 53 

undergraduates enrolled in a Genetics course or in an Introductory 

Biology course at Carnegie Mellon University were recruited to 

participate in the study for pay, at a point in the semester where 

the tutor software was relevant to their classroom learning. The 53 

students completed a total of 33,643 problem solving attempts 

across a total of 22,126 problem steps in the tutor.  

Study 3 (High school students, Three-Factor Cross). 56 high 

school students who were enrolled in high school biology courses 

used the tutor. The students were recruited to participate in the 

study for pay through several methods, including advertisements 

in a regional newspaper and recruitment handouts distributed at 

two area high schools. The 56 students completed a total of 

21,498 problem solving attempts across a total of 9,204 problem 

steps in the tutor. 

 

2.1 Learning System and Learning Activity 
The data used in this paper was drawn from student use of the 

Genetics Cognitive Tutor [14]. This tutor consists of 19 modules 

that support problem solving across a wide range of topics in 

genetics (Mendelian transmission, pedigree analysis, gene 

mapping, gene regulation and population genetics). Various 

subsets of the 19 modules have been piloted at 15 universities in 

North America. 

This study focuses on two of these tutor modules. One employs a 

gene mapping technique called a Three-Factor Cross. The tutor 

interface for this reasoning task is displayed in Figure 1. In this 

technique two organisms are crossed (two fruit flies in the 

example) and the resulting distribution of offspring phenotypes is 

analyzed to infer the order of three genes on the chromosome and 

the relative distances between the three pairs of genes. 

The other module, Gene Interaction and Epistasis, engages 

students in extending basic Mendelian transmission to two genes. 

In this task, displayed in Figure 2, students cross three true-

breeding strains, perform intercrosses, and based on offspring 

phenotype frequencies, infer the genotypes of the true-breeding 

strains and each of the offspring phenotypes. 

 

 

Figure 1. Screenshot from the Three-Factor Cross lesson of the 

Genetics Cognitive Tutor 

 

 

Figure 2. Screenshot from the Gene Interaction lesson of the 

Genetics Cognitive Tutor 

 

 



2.2 Design 
The studies were conducted in computer clusters at Carnegie 

Mellon University. All students attended study sessions on two 

consecutive days; in studies 1 and 2, each of these lasted 2 hours, 

while in study 3, each lasted 2.5 hours. All students engaged in 

Cognitive Tutor-supported activities for about one hour in each of 

the two sessions. In studies 1 and 3 all students completed 

standard Three-Factor Cross problems, as depicted in Figure 1, in 

both sessions, while in study 2 all students completed standard 

Gene Interaction problems, as depicted in Figure 2, in both 

sessions. 

During the first session of each study, some students were 

assigned to complete other cognitive-tutor activities designed to 

support deeper understanding; however, no significant differences 

were found between conditions for PFL or any other robust 

learning measure (this is reported for study 1 in [14]), so in this 

analysis we collapse across the conditions and focus solely on 

student behavior and learning within the standard problem-

solving Cognitive Tutor activities. 

All students completed a problem-solving pre-test at the 

beginning of the first session, and a problem-solving post-test 

immediately following the Cognitive Tutor activities in the second 

session. Following the problem-solving post-test in the second 

session, students also completed a transfer test and preparation-

for-future-learning (PFL) test. Finally, students in studies 1 and 2 

returned a week later to complete a problem-solving retention test. 

Within this paper, we focus all analysis on the PFL test, as a 

particularly strong indicator that student learning is robust (cf. 

[9]). A PFL prediction model was built on a dataset combining 

the three studies. 

 

2.3 PFL Test 
This study examines student performance on preparation-for-

future-learning problem-solving tests. By definition, the reasoning 

in each of these two tests is related to solving Three-Factor Cross 

or Gene Interaction problems, respectively, but is sufficiently 

more complicated that a student could not be expected invent a 

solution method by direct transfer, and certainly not in a short 

period of time. Consequently, each of the PFL tests incorporated 

instructional text on the required reasoning, which students read 

prior to problem solving. The PFL tests were designed in 

collaboration between biology experts and a cognitive scientist 

(the fourth author).  

In the Three-Factor Cross studies, students were asked to solve 

parts of a four-factor cross problem; the PFL test presented a 2.5-

page description of the reasoning in a four-factor cross 

experiment, then asked students to solve some elements of a four-

factor cross problem: identifying the middle genes, identifying all 

the offspring groups with a crossover between two specific genes 

and finding the map distance between those two genes. 

In the Gene Interaction study, students were asked to reason about 

gene regulation problems. In these problems, three genes, an 

operator, a structural gene and a regulatory gene, act together to 

control DNA transcription. The test presented a 1.5 page 

description of several gene regulatory systems, then asked student 

to reason about the impact of dominant and recessive alleles of the 

component genes on transcription. 

PFL tests were completed by all students in the three studies, with 

an average percent correct of 0.89 (SD=0.15), 0.74 (SD=0.24), 

and 0.66 (SD=0.28) for Study 1, Study 2, and Study 3, 

respectively. 

3. MOMENT-BY-MOMENT LEARNING 
GRAPH 
3.1 Construction of the Graph 
The construction of the Moment-By-Moment Learning Graph 

(MBMLG) is based on a three-phase process, which first infers 

moment-by-moment learning using data from the future, then 

infers the same construct without data from the future, and then 

integrates across inferences over time to create a graph.  

The first step is to infer moment-by-moment learning using data 

from the future, based on an approach first proposed by [2]. To 

obtain this inference, a Bayesian Knowledge-Tracing (BKT) 

model [13] is used to calculate the probability that the student 

knows a specific skill at a specific time, based on the student’s 

history of success on problems or problem steps involving that 

skill. The BKT model is updated every time the student responds 

to a problem step, based on the correctness of the response, 

allowing for an aggregate estimate of student knowledge over 

time.  

Then, the estimation of student knowledge and the parameters of 

the BKT model are combined using Bayesian formulas (discussed 

in mathematical detail in [3]), to infer the probability that a 

student learned a skill or a concept at a specific step during the 

problem-solving process, by looking at the probability of future 

actions if the student had learned the skill at this point. This 

probability is referred to as P(J) (J stands for “just learned”). That 

is to say, instead of assessing the probability that a skill is known 

by the time the student reaches the Nth step that involves that 

skill, the model assesses the probability that the skill was learned 

between time N-1 and time N. At an intuitive level, high values of 

P(J) are seen when a student’s performance shifts from being 

mostly incorrect to mostly correct, but precise values are obtained 

using current estimates of the probability the student knows the 

skill, along with model estimates of the probability of correct 

answers being due to guessing, and incorrect answers being due to 

slipping or carelessness. This model uses information on past, 

current, and future performance, to predict the probability that 

learning occurred during each step of the student’s work within 

the computer-based learning environment. 

Once these predictions have been obtained, a machine-learned 

model is built, using a set of features of student data (such as the 

recent history of help and errors on this skill, and time taken on 

the current and recent attempts) to predict P(J) values based on 

past and current information only. Within the work presented 



here, the same feature set as was used for the Cognitive Tutor in 

[3] was used. The list of features inputted into the machine 

learning algorithm is: 

• Assessments of correctness:  

o Percent of all past problems that were wrong on this KC.  

o Total number of past problems that were wrong on this 

KC.  

o Number of last 5 problems that were wrong.  

o Number of last 8 problems that were wrong.  

• Measurements of time:  

o Time taken (SD faster/slower than average across all 

students).  

o Time taken in last 3 actions (SD off average) Time taken 

in last 5 actions (SD off average)  

o Total time spent on this KC across all problems  

o Time since the current KC was last seen.  

• Data on hint usage:  

o First response is a help request.  

o Bottom-out hint is used.  

o Number of last 8 problems that used the bottom-out hint.  

o Number of last 5 problems that included a help request.  

o Number of last 8 problems that included a help request.  

• Other measurements:  

o Total problems attempted in the tutor so far.  

o Total practice opportunities on this KC so far.  

o Response is chosen from a list of answers (Multiple 

choice, etc).  

o Response is filled in (No list of answers available).  

 

This model serves the joint purposes of enabling the model to be 

used for eventual intervention, and smoothing the sometimes 

extreme values of P(J) that can be obtained when the BKT 

model’s parameters for guessing and slipping are low. The model 

used here is built using linear regression with M5’ feature 

selection [30], in RapidMiner Version 4.6 [20]. To validate the 

generalizability of our models, 6-fold cross-validation at the 

student level was used (i.e., detectors are trained on five groups of 

students and tested on a sixth group of students). By cross-

validating at this level, we increase confidence that detectors will 

be accurate for new students. 

The goodness of the models was assessed using the Pearson 

correlation coefficient between the training labels of P(J) for each 

opportunity to learn each KC, and the values predicted for P(J) for 

the same opportunity by the machine-learned models. As both set 

of values are quantitative, and there is a one-to-one mapping 

between training labels and predicted values, linear correlation is 

a reasonable metric.  

The P(J) model achieved solid correlations to the training labels 

under 6-fold student-level cross-validation, with values of 0.68 for 

Study 1 (college genetics 3-factor cross lesson; reported in [6]), 

0.65 for Study 2 (college genetics gene-interaction lesson), and 

0.48 for Study 3 (high school genetics 3-factor cross lesson). 

These values are moderately higher than those seen for P(J) 

models built for the Middle School Cognitive Tutor or 

ASSISTments, probably due to the more diverse collection of 

lessons used in these earlier studies (e.g. [3]). The difference in 

correlation between the college studies and the high-school study 

might suggest between-population differences; perhaps the high 

school students differed more from each other than the college 

students, all of whom had been accepted and chose to attend the 

same university.  

 

3.2 Previous Studies: Association with PFL 
In prior work, Moment-by-Moment Learning Graphs were created 

for the Genetics Tutor and then visually analyzed by human 

coders; the coders examined the graphs and chose for each 

instance the visual patterns that can be observed in it (either a 

single pattern or multiple patterns). In specific, seven specific 

visual patterns of the MBMLG were identified, coded by human 

coders (achieving high inter-rater reliability), and then those 

human labels were correlated with scores on a PFL test [7]. In that 

work, it was found that two patterns of the MBMLG are 

statistically significantly associated with PFL, specifically (see 

Figure 3): 1) Plateau - three or more sequential problem steps that 

have significantly higher values for P(J) than the rest of the 

student’s behavior. This form represents students who have steady 

learning (e.g., steady improvement in performance) during only 

part of the learning activity. The plateau visual form was found to 

be negatively associated with PFL (r=-0.27, statistically 

significant when controlling for multiple comparisons). 2) 

Immediate drop – the first problem step for the skill has a high 

value for P(J), which then immediately falls to low values for the 

rest of the learning. Immediate drop most likely represents a 

student who already knows the relevant skill and simply must 

transfer it into the learning system, or a student immediately 

mastering a very easy skill. Immediate drop is positively 

associated with PFL (r=0.29, statistically significant when 

controlling for multiple comparisons), suggesting that students 

who already know a skill are more likely to be prepared for future 

learning when they start the tutor, or that the over-practice that the 

tutor represents for these students may be enhancing their 

preparation for future learning. This suggests the hypothesis that 

over-practice can lead students to not only develop greater speed 

of performance [23] and lower probability of forgetting [24], but 

also to deeper conceptual knowledge required to prepare them for 

future learning. 

Additionally, “Spikiness” in the MBMLG – that is, the extent to 

which there is a prominent peak in the graph, which might 

indicate a “eureka” moment (cf. [3,4]) – was shown to be 

correlated with PFL and as a significant factor in a PFL machine-

learned prediction model [5]. These results suggested that the 

visual or functional form of the Moment-By-Moment Learning 

Graph can be highly associated with preparation for future 

learning. However, the results in [7], as they rely upon human 

labels, are not sufficient for use to improve the automatic adaptive 

behavior of educational software; also, human labels are not easily 

available at scale for larger studies. The model developed in [5] 



uses measures other than the MBMLG, and only simple measures 

of the MBMLG; hence it does not fully demonstrate the potential 

of the graph to individually predict PFL. In this paper, we attempt 

to extend these approaches by assessing the mathematical 

properties of the MBMLG in an automatic fashion, and 

developing a model that relies solely on these properties to predict 

PFL. 

 

 

Figure 3. Examples of MBMLG patterns that were found to 

be significantly related to PFL: plateau (top) and immediate 

drop (bottom) 

 

4. FEATURE ENGINEERING 
In this paper, we attempted to distill quantitative features of the 

MBMLG to use in automated prediction of PFL. 15 features were 

computed for each MBMLG, and used as potential predictors of 

PFL. The full list of features is given here. Features included in 

the prediction model are highlighted in boldface; in square 

brackets, a short name is given for each variable, to be used later 

in the article: 

• Average moment-by-moment learning [avgMBML] 

• Sum of moment-by-moment learning values [sumMBML] 

• Number of opportunities to learn the KC [graphLen] 

• Area under the graph [area] 

• Height of the largest peak [peak] 

• Height of the 2nd-largest peak [2ndPeak] 

• Height of the 3rd-largest peak [3rdPeak] 

• First index of the largest peak (index = 1 equals the first step 

involving the skill, index = 2 equals the second step involving 

the skill, and so on) [peakIndex] 

• First index of the 2nd-largest peak [2ndPeakIndex]. 

• Distance (in terms of number of problem steps) between the 

largest and the 2nd-largest peaks [2PeaksDist] 

• Distance between the largest and the 2nd-largest peaks, divided 

by the total number of steps involving the KC [2PeakRelDist] 

• Decrease [%] of magnitude from largest to 2nd-largest peak 

[2PeakDecr] 

• Decrease [%] from largest to 2nd-largest peak, divided by the 

distance (# steps) between them [2PeakRelDecr] 

• Decrease [%] from largest to 3rd-largest peak [3PeakDecr] 

• Decrease [%] from largest to 3rd-largest peak, divided by 

the distance (# of steps) between them [3PeakRelDecr] 

5. PFL PREDICTION MODEL 
To predict the PFL test results using the 15 MBMLG features, we 

averaged values of these variables across the sets of genetics 

problem-solving skills in each of the two tutor modules. Using 

this data set, we built a model to predict the PFL test from the 

quantitative attributes of the MBMLGs, using linear regression 

with forward selection of model features (cf. [21]). The model 

was validated using student-level leave-one-out cross-validation. 

In addition, a first pass was conducted prior to model selection 

where features were eliminated if, taken individually, they had 

cross-validated correlation below zero. This procedure was 

adopted as an extra control and over-fitting. This first pass 

eliminated five variables ([peakIndex], [2ndPeakIndex], 

[graphLen], [2PeaksDist], [2PeakRelDist]). 

Goodness of fit was assessed using the Pearson correlation 

between the predicted PFL score and the actual score. The best-

fitting model has a cross-validated correlation of r=0.532 with 

actual PFL scores, substantially better than the cross-validated 

correlations previously found (e.g., [4]) for models based on 

meta-cognitive and behavioral features (0.360) or models 

assessing student skill within the software (0.285). The best model 

is presented in Table 1. 

Interestingly, the 3rd-largest learning peak is involved in three of 

the four variables selected into the best predictive model. In 

specific, the magnitude of the 3rd-largest learning peak is 

positively associated with PFL, and large gaps in the size between  

the largest and 3rd-largest learning peak (measured by decrease 

[%] from largest to 3rd-largest peaks) are positively associated 

with PFL. These relationships may suggest that single “eureka” 

moments might indeed be meaningful for robust learning. Having 

the steepness of the decrease between the largest and to the 3rd-

largest peaks (decrease [%] from largest to 3rd-largest peaks, 

divided by the distance between them) with a negative coefficient 

emphasizes the importance of multiple (though more minor than 



the most prominent one) learning events which are spread out 

over time (as opposed to occurring more rapidly). As such, the 

best pattern appears to be a pattern where the student has multiple 

substantial moments of learning (at least three) of comparable 

magnitude, spread out over time.  

Table 1. Best-fitting linear regression model predicting PFL 

Variable Coefficient 

Area under the graph [area] -8.459 

Height of the 3rd-largest peak [3rdPeak] +2.634 

Decrease [%] from largest to 3rd-largest peaks 

[3rdPeakDecr] 
+0.641 

Decrease [%] from largest to 3rd-largest peaks, 

divided by the distance between them 

[3rdPeakRelDecr] 

-0.296 

(Constant) +0.607 

 

Another finding worth discussing is the negative coefficient of 

total area under the graph, which indicates that students who have 

relatively higher learning in the environment have generally lower 

PFL (when controlling for the other features). While this finding 

is at a surface-level non-intuitive, it is worth noting that in an 

effective learning environment, most students learn the skills 

being taught if they do not already know them. As such, many or 

most of the students who do not learn the skills being taught 

already knew the skills to begin with. Indeed, problem-solving 

pre-test and area are statistically significantly negatively 

correlated in our study, as shown earlier. These students may have 

therefore been able to focus on developing more robust learning 

while using the environment, rather than needing to focus on the 

exact skills directly taught by the environment. 

 

5.1 Correlations of MBMLG Feature with 
PFL 
Having built the full model, it may be worth examining the types 

of relationships between the individual MBMLG features and 

PFL score. In particular, some variables may reverse direction in a 

complex model. Therefore, in order to understand individual 

features’ relationship to PFL, we computed correlations between 

each feature the PFL score. In addition, we computed correlation 

with pre-test scores, in order to explore the possibility that some 

of these relationships might be explained by prior knowledge. 

Results are summarized in Table 2 (full names of the variables, 

along with their shortened names, appear in Section 4, Feature 

Engineering), and are discussed in this section. 

Three features that aggregate overall measures of moment-by-

moment learning were found to be significantly negatively 

correlated with both pre-test and PFL scores; these features are: 

average moment-by-moment learning [avgMBML], sum of 

moment-by-moment learning values [sumMBML], and area under 

the graph [area]. That is, low values of learning as reflected in 

the MBMLG are indicators of high prior knowledge, which is in 

turn a good predictor of PFL.  

The features that measure values of the largest peaks of the 

MBMLG are significantly negatively correlated with PFL. That is, 

the larger the values of the graph’s highest peaks, the lower the 

PFL score is. Interestingly, the correlation between the 2nd-largest 

peak and PFL is stronger than that of the largest peak; and the 

correlation between the 3rd-largest peak and PFL is stronger than 

that of the top two largest peaks. It is important to notice that 

height of the 3
rd

-largest [3rdPeak] is significantly (though mildly) 

negatively correlated with prior knowledge, while the height of 

the 2nd-largest peak [2ndPeak] is marginally negatively correlated 

with prior knowledge, and height of the largest peak [peak] is not 

significantly correlated with prior knowledge. Hence, based only 

on a few meaningful learning events (three, to be more specific), 

we can conclude that the student was not properly prepared to the 

learning to begin with, and as such – the student is probably not 

prepared for future learning as well.  

Lastly, the four features that measure the decrease in the graph 

largest peaks – both absolute and relative to the distant between 

the peaks – are significantly positively correlated with both pre-

test and PFL scores. It is important to first fully understand the 

meaning of these four features. The larger the absolute decrease 

between the largest peak values of the graph – measured by 

decrease [%] of magnitude from largest to 2nd-largest peaks 

[2PeakDecr], decrease [%] of magnitude from largest to 3rd-

largest peaks [3PeakDecr] – the more likely it is that there was a 

single meaningful learning event across the learning process. The 

higher the value of the relative decrease between the largest peak 

values – measured by decrease [%] from largest to 2nd-largest 

peaks, divided by the distance between them [2PeakRelDecr], 

decrease [%] from largest to 3rd-largest peaks, divided by the 

distance between them [3PeakRelDecr] – the more likely it is that 

the graph peaks are either different in value from each other, or 

that they are close to each other. So, these features’ positive 

correlations with PFL suggest that either single learning events, or 

temporally close multiple learning events are associated with 

robust learning. 

That said, there are two interesting sign-flips observed between 

the individual features’ correlations with PFL scores and their 

coefficients in the prediction model: the coefficient of the 3rd-

largest peak [3rdPeak] is positive in the model while it is 

negative when correlation is examined individually; and the 

coefficient of the steepness of the decrease from the largest to the 

3rd-largest peaks [3rdPeakRelDecr] is negative in the model while 

it is positive when correlation is examined individually. 

 

 



Considering these results along with the full model, we might 

conclude that when controlling for overall learning (area under 

the graph [area]) and for the prominence of the most meaningful 

learning event (measured by Decrease [%] from largest to 3rd-

largest peaks [3rdPeakDecr]), another pattern emerges as an 

indication to PFL, which is having multiple learning events spread 

over the learning process. 

Another interesting finding regarding the individual feature 

correlations is that Number of opportunities to learn the KC 

[graphLen] is significantly positively correlated with pre-test, but 

is not significantly correlated with PFL. This might suggest that 

over-practice within the tutor is not necessarily associated with 

robust learning; however, practice within the tutor after gaining 

knowledge in another fashion might be useful (as immediate drop 

was found to be positively associated with PFL in Baker, 

Hershkovitz, et al., in press). 

 

Table 2. Correlations between MBMLG features (N=179) and 

Pre-test, PFL scores; significant results (two-tailed) are 

boldfaced (* p<0.05, ** p<0.01), marginally significant results 

(p<0.1) are italicized 

Feature Pre-test PFL 

[avgMBML] -0.35** -0.48** 

[sumMBML] -0.19** -0.40** 

[graphLen] 0.30** 0.00 

[area] -0.35** -0.48** 

[peak] -0.09 -0.35** 

[2ndPeak] -0.13 -0.41** 

[3rdPeak] -0.20** -0.44** 

[peakIndex] -0.15 -0.09 

[2ndPeakIndex] -0.03 0.03 

[2PeaksDist] 0.15 0.05 

[2PeakRelDist] 0.14 0.07 

[2PeakDecr] 0.29** 0.45** 

[2PeakRelDecr] 0.26** 0.40** 

[3PeakDecr] 0.35** 0.49** 

[3PeakRelDecr] 0.21** 0.38** 

 

6. CONCLUSIONS AND DISCUSSION 
In this paper, we present a new method of predicting preparation 

for future learning (PFL), based on quantitative analysis of the 

Moment-by-Moment Learning Graph (MBMLG; [2-3]) the 

patterns of which were previously shown to be associated with 

PFL [6]. Overall, we find that using MBMLG features in 

machine-learned prediction models outperforms previous attempts 

to predict PFL using BKT parameters and behavioral and 

metacognitive variables [4-5]. 

A crucial part of many EDM applications is the feature 

engineering. In this case, the features we defined and tested were 

derived from two main streams of literature. First, this work is a 

natural continuation of previous studies that showed that certain 

patterns of the MBMLG were strongly associated with PFL, or 

robust learning in general (cf. [6]). In particular, the presence of 

immediate drop and plateau were shown as good indicators of 

better/poorer PFL, respectively. Hence, the use of measures of the 

three largest peaks of the graph – the decrease in their values, and 

the distances between the first and the second. A second relevant 

line of work is the broader educational research of robust 

learning. As many studies suggest, learner characteristics have a 

strong influence on robust learning; of these characteristics, 

cognitive ability [1,18] can be easily measured via the student 

model, hence the use of learning measures (which are at the core 

of the MBMLG).  

Another potentially interesting line of future work might be to 

present MBMLG graphs to teachers and content developers to 

find irregularities in the learning process (an idea that had 

previously inspired the creation of learnograms, cf. [22]). 

Teachers and content developers may have insights about the 

meaning of the MBMLG graphs; they may also find ways to 

incorporate these graphs in their work to understand their students 

better.  

Overall, our findings suggest that the pattern most associated with 

a better PFL consists of a process where the student has at least 

three substantial moments of learning of comparable magnitude, 

spread out over time. One limitation of the current approach, as it 

is implemented here, is that PFL prediction is made only after 

practice has been completed. That is, data cannot be used in real-

time like it was used in [4]. However, truncated forms of the 

MBMLG might be explored for that purpose. 

Analyzing the MBMLG qualitatively and using its features to 

predict PFL is an instance of “discovery with models”, that is of 

using an existing model (in our case, the MBMLG) in a new 

analysis (predicting PFL). Discovery with models was suggested 

as a promising EDM approach in [7]. We build on previous 

studies involving the same model (e.g., [2-3,6]), and advance the 

potential automatization of the use of the MBMLG as a 

component in future studies. 
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