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Abstract: Numerous prior articles have studied the relationships between student affect and 

various outcomes of learning. Prior research has found these relationships are complex; shifts 

in student affective experiences and the duration in which students remain in particular states 

form temporal patterns that are often difficult to interpret. Much of the existing research in this 

area focuses on the correlation between the overall prevalence of particular affective states and 

learning outcomes, ignoring the temporal and sequential characteristics of student affect. In this 

work, we leverage temporal clustering methods to identify emerging patterns of affect while 

students work within a computer-based learning platform to explore how sequence patterns of 

student concentration, boredom, confusion, and frustration correlate with student performance 

on a delayed assessment test. Similar to prior work, we find strong relationships between affect 

and student learning, even accounting for a measure of prior knowledge. Additionally, we 

identify that the directionality of these correlations in regard to specific affective states differs 

across clusters. While some affective states such as boredom are identified to exhibit negative 

relationships with learning within some patterns, a strong positive relationship between 

frustration and learning is found within one of the emerging pattern clusters. 
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1. Introduction 
 

There is a complex relationship between students’ affective experiences and their learning. Affective 

transitions are highly complex and often do not seem to follow a specific interpretable sequence 

(Karumbaiah et al., 2021a), and there is also variation in the duration of individual affective experiences. 

Despite these known complexities, much of the research on the relationship between affect and learning 

looks for linear relationships between the prevalence of affective states with learning gains. This line 

of work has shown some clear relationships (see research synthesis in Karumbaiah et al., 2022). For 

instance, boredom is associated with poorer learning outcomes in several studies (e.g., Rodrigo et al., 

2009; Bosch & D’Mello, 2017; Gong et al., 2019)) and engaged concentration is replicably associated 

with better learning outcomes in several studies (e.g., Rodrigo et al., 2009; Brom et al., 2014; Fancsali, 

2014). However, confusion has inconsistent relationships with learning, varying considerably between 
studies (Karumbaiah et al., 2022). One empirical study suggested that the key to the inconsistent 

findings around learning’s relationship to confusion may be the duration of these affective experiences. 

Liu and colleagues (Liu et al., 2013) found that extended confusion and frustration were associated with 

poor learning outcomes but that brief confusion and frustration were associated with positive learning 

outcomes. 

While previous works have observed trends within and across affective states, the current work 

attempts to observe how patterns of affect relate to student learning as measured by a delayed measure 

of learning (described further in a later section). It is therefore important to further define what these 

patterns refer to and how this work may be distinguished from other related research on student affective 

patterns (Andres et al., 2019) as introduced in the previous section. To help illustrate this, consider the 
example sequence in Figure 1. Each of the lines represents a probabilistic estimate of one of four 

affective states (engaged concentration, boredom, confusion, and frustration) over the span of the 

assignment. In describing a sequence such as this one, prior works including D’Mello & Graesser (2011) 



 

 

and Botelho et al. (2018) would have described affective chronometry, or periods of this sequence where 

the student remained in a single affective state for an extended time period. Alternatively, other works 

such as D’Mello & Graesser (2012) would have described the sequence’s affect dynamics, characterized 

by the shifting between one affective state and another. Observing this sequence, however, it can be 

noted that there are few consistent trends; shifts and periods of affect appear to occur in bursts, with 

subsequent periods of uncertainty where there is arguably no clear singular state exhibited. The patterns 

exhibited within and across these affective states may provide novel insights into the relationships 

between affect dynamics and student learning. 

Work on affect dynamics has not been extensively connected to the work on affect 

chronometry. Typically, chronometry is only considered in affect dynamics in terms of comparing brief 

(20 second or less) and extended periods (60-80 seconds) of the same affective state (Liu et al., 2014; 

Andres et al., 2019). Another limitation in the affect dynamics literature is the focus on relatively simple 

one-step models, which only look at single affective transitions (i.e. from state 1 to state 2). Affect 

appears to manifest in complex patterns over time, and our understanding of these is limited.  

Temporal or sequence clustering is now a well-studied practice in research pertaining to pattern 

recognition (Liao, 2005). While specific implementations of time-series clustering methods vary, many 

rely on the generation of correlation-, spectral-, and wavelet coefficient-based features (Montero & 

Vilar, 2014) in combination with “warping” or scaling procedures (Berndt & Clifford, 1994) to describe 

the sequence holistically, before clustering based on these generated features.  

There have been major advances in the detection of affect as well. Early work in affect detection 

within learning relied upon a complex array of sensors (Conati et al., 2003; D’Mello et al., 2007), 

utilized in laboratory settings, making it difficult to scale across long time periods and large selections 

of learners. Although more scalable sensor-free affect detection soon emerged, early models were only 

moderately better than chance (D’Mello et al., 2008; D’Mello & Graesser, 2012). Recent work 

leveraging deep learning algorithms has increased the quality of sensor-free affective detectors to the 

point where they can plausibly be used for fine-grained work (Botelho et al., 2017; Hutt et al., 2019), 

achieving AUC values approaching or equaling 0.8 for many affective states. Furthermore, even early 

affect detectors were more likely to obtain statistically significant findings about rare affective states 

than self-report or observational methods (Karumbaiah et al., 2022), possibly because they provided the 
opportunity to collect a much larger number of measurements, by 3 or more orders of magnitude. 

In this paper, we leverage contemporary affect detectors to study affect dynamics and learning, 

specifically applying affect detectors developed using deep learning for the ASSISTments platform 

(Botelho et al., 2017). Specifically, we apply temporal clustering algorithms to investigate the patterns 

of student affect that emerge within student work on an assignment and examine whether affective states 

correlate differently with learning outcomes between the emerging patterns.  

 

 

2. Methodology 
 

The dataset used in this work is composed of interaction logs from students who used the ASSISTments 

learning platform (Heffernan & Heffernan, 2014) to complete mastery-based “skill builder” 

assignments during the 2016-17 through 2018-19 academic years. A skill builder is a problem set from 

which the system continues to present a series of problems to a student until they answer 3 consecutive 

Figure 1. Example sequence of affect estimates for a student working on an assignment. 

 



 

 

problems correctly. The dataset used here contains 3065 skill builder assignments from 867 students; 

this data did not include students from rural settings, following prior works which have identified that 

the affect detectors used in this work have difficulty extrapolating to this population (Ocumpaugh et al., 

2014; Karumbaiah et al., 2021b). We applied a deep-learning-based affect detector, pre-trained on 

historic ASSISTments data, developed and reported in Botelho et al. (2017), based on the collection of 

affect labels collected using BROMP classroom observations (Baker et al., 2020). The Botelho et al. 

(2017) model utilized in this work inherently assumes that students exhibit only one affective state at a 

time and produces a probability distribution over the 4 affective states. 

To examine the relationships between patterns of student affect and learning, we utilize another 

feature of ASSISTments which provides a delayed learning outcome measure. The Automatic 

Reassessment and Relearning System (ARRS) is a feature of the ASSISTments ecosystem which can 

be coupled with skill builder assignments where teachers opt to have students reassessed on the 

knowledge component they had learned during the initial skill builder assignment (Xiong et al., 2013). 

This assessment has previously been used as a measure of student learning (Wang & Heffernan, 2015).  

 

2.1 Patterns of Affect in Relation to Learning 
 

To explore the relationship between patterns of affect and this measure of student learning, we apply a 

two-phase methodology. First, we cluster sequences of affect estimates and then we use those clusters 

within a regression analysis. Traditionally, clustering methods are used to group similar samples based 

on their proximity within a defined feature space. However, in this work we are observing sequences 

of student affect, where each time step in a sequence is defined by four probabilistic affect estimates.  

In this work, we utilize the TSClust R package (Montero & Vilar, 2014) to generate the 

temporal features for our observed sequences of affect estimates before then applying a K-means 

clustering method based on a dynamic time warping distance measure (Ratanamahatana & Keogh, 2004; 

Lemire, 2009). This process involves first creating a matrix of samples as described by a vector of 

features before then using a simple elbow method to examine the ratio of within- and cross-sum of 

squared distances of samples at increasing numbers of clusters (i.e. the range of 2 to 15 clusters in our 

analysis). From this, we select K=5, and use a coding package-supplied method to plot these 5 emerging 

clusters as seen in Figure 2. These clusters represent different temporal patterns of student affect. 

We build 5 separate logistic regression models, one for each cluster, to examine how each 

affective pattern correlates with our learning outcome. For each cluster, we generate a set of features to 

help describe the dynamics of each affective state within the cluster; these features include the natural 

log of the length of each sequence in addition to the mean and variance of detector estimates of each of 

three observed affective states (boredom, confusion, and frustration) composing each sequence; the 

fourth affective state, engaged concentration, is omitted due to a high inverse correlation and 

collinearity between these estimates and the other three affective states. Due to the large differences in 

Figure 2. The sequences of affect estimates within each of the five affect pattern clusters. 

 



 

 

scales of estimates across the different affective states, likely caused by the rarity of confusion and 

frustration, we use a median split to dichotomize the mean and variance values to represent high/low 

mean and high/low variance.  

 
 

3. Results 
 

Figure 2 shows the results of the temporal clustering analysis. Within each cluster, the chart displays 4 

sections denoted by a vertical dotted line, ordered by engaged concentration, boredom, frustration, and 

confusion. Within each cell, the x-axis refers to the time step of the contained sequences while the y-

axis represents the estimates of each affective state; the lines within each section of each cell represent 

an overlay of these estimates for each of the affective sequences found within the cluster. Clusters 1 

and 4 show the longest sequences; this denotes that the students who spent the most time and attempted 

the most problems are contained within these clusters, but does not necessarily indicate that students 

remained in any particular affective state for a longer period compared to other clusters.  

The 5 regression analyses are shown in Table 1. Across these regressions, there are several 

observations worth highlighting. First, the measure of prior knowledge (prior percent correct), reliably 

predicted assessment performance in Clusters 1, 2, and 3, but not in Clusters 4 and 5. The length of the 

sequences was a reliable (negative) predictor in Clusters 1, 3, 4, and 5, likely as an inverse measure of 

both initial knowledge and speed of learning within this mastery-based assignment. 

 

 

4. Discussion and Future Works 
 

Analyzing the relationship between affect and learning across five distinct temporal clusters, we find 

that boredom and frustration exhibit reliable relationships with learning, but only in some clusters. 

Within several of the clusters, boredom was negatively correlated with learning (cf. Karumbaiah et al., 

2021a). Curiously, a relatively strong positive relationship between high frustration and student learning 

was found for Cluster 4, aligning to previous findings by Pardos et al. (2014); from our analysis, 

students with high frustration were twice as likely to answer the assessment item correctly. Distinctive 

from Cluster 1 where we see similarly-long sequence lengths, frustration emerges as a positive predictor 

of learning; in other clusters it is associated negatively or weakly with learning. The findings across 

clusters align with other prior work (Baker et al., 2010). The temporal clusters we have generated 

provide means to identify this “productive” frustration previously theorized in (D’Mello & Graesser 

2012). It is also worth noting that this positive relationship between frustration and our learning outcome 

is found in the cluster with the lowest overall performance on the assessment. Cluster 4 appears to 

characterize students who are struggling to learn the material, where frustration is an indicator of the 

most successful of these students; perhaps for a struggling student, the only way to succeed is to persist 

through that struggle and the frustration it generates (e.g. D’Mello & Graesser 2011). 

Table 1. Coefficients for each cluster’s regression predicting the one-week assessment performance. 
Boldface indicates statistical significance while marginally-significant values are denoted with †. 

 



 

 

As the clusters were generated using multivariate, continuous-valued estimates of affect over 

time, it is worth highlighting that we see at most one affective state emerging as a reliable predictor of 

learning within each cluster. These significant states were rarely the highest estimate among the detector 

outputs; in other words, if one were to convert the estimates to discrete labels by simply taking the state 

corresponding with the highest estimate, subtle affective trends would not have been possible to identify. 

However, the lack of a discrete label makes it more difficult to interpret the patterns that emerged (cf. 

(Andres et al., 2019). Retaining full probability information capturing more complex relationships 

within and across affective states, but sacrifices a level of interpretability as a result. 

We have, then, a trade-off between characterizing complex affective patterns and 

interpretability. Future work may overcome this by exploring better ways of describing the patterns 

within each cluster. We approached this initially by dichotomizing the means and variances of each 

affective state, but future work could consider additional measures of affective dynamics and 

chronometry, to better represent the properties being captured by the temporal clustering.  

Another potential limitation of the current work is in the use of sensor-free detectors to measure 

affect. While the detectors have been shown to exhibit high performance in predicting human-recorded 

observation labels (Botelho et al., 2017), (further) improvements to these detectors could provide more 

accurate insights into patterns of student affect. It is also important to emphasize that the detector model 

used in this work was trained on a dataset collected between 2010 and 2012, as reported in Botelho et 

al. (2017). It is uncertain whether later changes to the system or user population might lead to lower 

detector reliability (cf. Levin et al., 2022). Future work should examine longitudinal and contextual 

factors that may affect detector performance, to identify and mitigate potential threats to validity. 

Overall the findings of our analyses provide new insights into the relationship between the 

dynamics and chronometry of affect and student learning. The subtle complexities of affect, in a 

temporal sense, are not currently well-understood, but the methods presented in this work provide a 

means to better explore this. This method may be particularly useful for better understanding affective 

and behavioral patterns exhibited by students and eventually we may be able to use these clusters to 

identify what recommendations to give students (for instance, who should persist and who should seek 

help). In this fashion, these analyses may be a step towards building better supports for students that 

avoid negative interactions and experiences that may lead to poorer learning outcomes. 
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