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Abstract: Self-regulated learning (SRL) is important for computer science education. 
Yet, students often do not have SRL skills to benefit their learning. In this study, we 
examined 187 (n=187) students’ SRL behaviors while they built programs with an 
automated feedback tool. Anchored in Winne and Hadwin’s (1998) COPES model of 
SRL, our results showed that novices used more operators to debug compiler errors, 
while more experienced programmers used more operators to debug non-compiler 
errors. Finally, a random forest classifier showed that prior knowledge was the most 
important COPES feature predicting learning gain, followed closely by the student’s 
perceived programming ability, use of evaluations with the automated feedback tool, 
and operators used to debug non-compiler errors on failed programs. 

 
Keywords: Computer Science Education, Self-regulated Learning, Learning 

 
 
1. Introduction 
 
Computer science (CS) education requires students to develop self-regulated learning (SRL) 
skills (Prather et al., 2018); yet many students, particularly novices, do not have the SRL 
skills to benefit their performance (Arakawa et al., 2021; Loksa et al., 2016). SRL requires 
monitoring and adapting learning processes and strategies to purse a goal. COPES (Winne 
& Hadwin, 1998), a widely adopted framework, emphasizes that feedback is the central 
mechanism driving SRL, adaption, and learning.  

Many CS educators rely on automated assessment tools since they offer automatic 
feedback and evaluation (Chen et al., 2020), creating a feedback loop between the student 
and automated tool, possibly opening doors to support SRL. Arakawa et al. (2021) examined 
whether students struggled to initiate SRL as they programmed with an automated feedback 
tool. Results showed that often students ignored the feedback from the tool altogether, 
perhaps due to a lack of SRL skills (Arakawa et al., 2021). Loksa and others (2016) 
examined relations between coding errors and SRL strategies collected using a think-aloud 
protocol. While students programmed with an automated feedback tool, the results showed 
novices used SRL infrequently and often ineffectively for debugging errors. In contrast, 
experienced programmers used SRL during programming and they made fewer errors. 
Marwan et al. (2022) and Ko et al. (2019) found similar results to Loksa et al. (2016). Novice 
and experienced students differed in their use of SRL strategies and coding errors with an 
automated feedback tool. In sum, prior programming knowledge plays a role on how SRL 
manifests with automated feedback tools and its relation to code quality. More research is 
needed to explore relations between prior knowledge, SRL processes with an automated 
feedback tool, and learning outcomes in introductory programming. 
 
2. Methods 
 
Data were collected from 245 CS undergraduates (n=245) during a mandatory, first-
semester programming course (C#) at a large University in Poland. Due to missing data for 
interest variables, students (n=58) were removed from our analysis, resulting in a subset of 



187 students (n=187; 39% female). The course covered 146 tasks on 8 basic CS education 
topics. The automated assessment tool, runcodeapp.com (Pankiewicz, 2020) allowed 
students to submit code on a pre-defined set of test cases. Feedback was provided as a 
total score, compiler errors, and detailed results for each test case. To view detailed 
feedback for each test case, students had to click on a selected test case. 

Participants completed a 5-point Likert scale (1=low, 5=high) to report their 
programming ability. An 8-item, multiple-choice pre-test was also administered to measure 
general programming knowledge (Mdn=38.75). The Likert scale and pre-test measures were 
used to assign students to a novice or more experienced group. A Wilcoxon test found pre-
test scores were significantly higher for students who reported more programming 
experience (Mdn=65.88) than novices (Mdn=16.25), W=8079, p<.001. As such, students 
were assigned to the more experienced group (n=87) if they reported a higher programming 
ability (3-5), or to the novice group if low (1 or 2; n=100). A 9-item, multiple-choice test 
evaluating knowledge of the course’s programming topics was administered at the middle 
(Mdn=55.56) and end of the semester (Mdn=66.67). Normalized learning gain (NLG) was 
used to calculate a normalized score of the max possible change from mid- to post-test 
(M=.09, SD=.38; see Marx & Cummings, 2007). To explore SRL with an automated 
feedback tool and its relation to learning, we grounded our work in Winne and Hadwin’s 
(1998) COPES model (see Table 1). Log data on code and interactions with the automated 
feedback tool were collected. 
 
Table 1. COPES construct descriptions and operational definitions. 

COPES Description Operational definitions 
  

Conditions Cognitive or external resources • Self-reported programming ability. 
• General programming knowledge scores. 

Operators Primitive information processing 
mechanics 

The proportion of consecutive test cases for 
code that scored <100: contained either a) 
compiler or b) non-compiler errors. 

Products Knowledge shaped by operators Not analyzed in current study. 
Evaluations Feedback on discrepancies 

between products & standards 
Average clicks on results of resubmitted 
code from the automated feedback tool. 

Standards The criteria of success Criteria for perfect program solutions. 
 
3. Results 
 
Do novices and more experienced programmers differ in the evaluations and 
operators used to debug failed programs with compiler and non-compiler errors? 
 
The Benjamini and Hochberg method controlled for type I errors. A Mann-Whitney test found 
more experienced (Mdn=.5) and novice programmers (Mdn=.63) marginally differed in how 
many operators they used to debug compiler errors, W= 3687, adj. α=.05, p=.07122. The 
second test found that more experience programmers used more operators to debug 
programs with non-compiler errors (Mdn=7.29) than novices (Mdn=6.96), W=5220.5, adj. 
α=.025, p=.01845. A separate Mann-Whitney found more experienced (Mdn=1.03) and 
novice programmers (Mdn=1.04; p=.3852) did not differ in the use of evaluations on failed 
programs with the automated feedback tool (p>.05). 
 
Which COPES features are important for classifying if students learned? 
 
For RQ 2, a random forest classifier was built to predict whether a student learned, from mid- 
to post-test using COPES variables. For that classifier, we split students into a group that 
learned (NLG>0) and a group that did not learn (NLG=<0). Data were partitioned into a 
75:25 split for training and testing. To strike a balance between the best AUC and the lowest 



error rate, grid search was used for the 1) number of trees grown and 2) COPES features 
used (Table 1) to grow each tree. Ten repetitions of 10-fold cross-validation (in the training) 
were used. The random forest classifier achieved an AUC ROC of .63 (95% CI [.54-.72] and 
Cohen’s kappa of .2553, with 2 features per decision tree. The important features for 
classifying NLG were, first, conditions, general programming prior knowledge, and second, 
perceived programming ability. The third most important feature was the evaluations 
students used during programming, followed by the operators used to debug non-compiler 
errors. The operators used to debug compiler errors had a mean importance of 0. 
 
4. Discussion 
 
Novice programmers do not utilize SRL effectively with automated feedback tools in CS 
education (Ko et al., 2019; Loksa et al., 2022; Marwan et al., 2022). In this paper, we 
explored the role of prior knowledge on SRL and its relation to learning outcomes. The first 
RQ found that novices used operators more to debug compiler errors on failed programs. In 
contrast, more experienced programmers used more operators to debug non-compiler 
errors. By contrast, the groups did not differ in the evaluations of failed programs.  

The second RQ found that the most important COPES feature for predicting students’ 
learning gain was their level of general programming knowledge prior to the course. This 
was followed by their perceived programming ability, how often they evaluated failed 
programs with the automated feedback tool, and use of operators to debug non-compiler 
errors. The number of operators used to debug compiler errors was not part of the predictors 
of students’ learning. Although syntax plays important role at the initial stage, its importance 
decreases over time. This work advances our understanding on the role of prior 
programming knowledge on SRL with an automated feedback tool and its relation on 
learning outcomes in CS education. This research has two limitations. First, the use of log 
data to study COPES, possibly missing other COPES behaviors that occur beyond system 
interactions, and 2) products were not collected, possibly missing additional data on SRL 
during programming. 
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