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Abstract: Knowledge Tracing estimates a student’s knowledge on a set of skills and 
predicts whether the student will answer correctly if given a question linked to subsets 
of such skills. We conduct an in-depth analysis on the best ways to apply the cognitive 
science principles such as memory decay and spacing within knowledge tracing, 
proposing new algorithms, MemDec and MemDec Spacing, to do so. We explore 
different methods of modeling the rate and weight of decay, with and without spacing, 
and analyze their impact on predicting performance in real-world data. Variations of the 
model are compared between each other as well as against other existing algorithms. 
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1. Introduction 
 

Knowledge tracing attempts to estimate student mastery on a set of skills from their 
performance. The outputs of knowledge tracing have several uses, including use in behavioral 
and self-regulated learning models, reports to instructors with actionable insights, and driving 
mastery learning within adaptive learning systems (Pelánek, 2017). Although the majority of 
the most recent work in knowledge tracing has investigated refinements to deep learning 
algorithms (Piech et al., 2015), there has also been interest in developing knowledge tracing 
algorithms that leverage findings from cognitive science (Choffin et al., 2019; Pavlik et al., 
2021) and studying how broadly applicable they are (Schmucker & Mitchell, 2022). In this 
paper, we investigate the implementation of cognitive science principles within knowledge 
tracing in detail, specifically focusing on memory decay and the spacing effect when applied 
to variants of some components of Logistic Knowledge Tracing (LKT) (Pavlik et al., 2021) with 
an emphasis on the components from Performance Factor Analysis (PFA) (Pavlik et al., 2009) 
and Recent-Performance Factor Analysis (R-PFA) (Galyardt & Goldin, 2014). We chose to 
study memory decay and spacing within this framework because of PFA’s interpretability and 
its support of multi-skill items. To study these concepts, we introduce a new algorithm that 
incorporates memory decay into the knowledge estimation and investigate how the spacing 
effect and different ways of governing the increase in memory decay influence modeling 
student performance. We consider two methods for modeling memory decay: one that uses 
the practice order (as in Galyardt & Goldin, 2014), and a second that uses a time window 
approach. Incorporating these concepts allows for the differentiation between a student’s 
current knowledge versus previous comprehension that may have been lost over time.  

In Section 2 we discuss the memory decay and spacing effect theories, and describe 
the well-known knowledge tracing algorithm, Performance Factor Analysis (PFA) (Pavlik et 
al., 2009). Section 3 contains Related Work investigating issues surrounding memory within 
knowledge tracing. In Section 4 we introduce a new algorithm, MemDec, and a variant, 
MemDec Spacing, that incorporates the spacing effect. Section 5 presents the real-world 
dataset used for the experiments. Analysis and experimental results are presented in Section 
6. Finally, conclusions and final remarks are discussed in Section 7.  
 



2. Knowledge Tracing and Memory 
 
2.1 Memory Decay and Spacing Effect 
 

Psychological effects influence student learning in classrooms and virtual learning 
environments. One such principle is the decay theory, a principle of forgetting which states 
that memory fades with the passage of time. Unless reinforced by repetition, the information 
we learn is forgotten over time. Without incorporating decay into knowledge estimation, it is 
difficult to account for situations where a student forgets. Memory decay has been widely 
studied and modeled by cognitive scientists and learning scientists (e.g. Mozer et al., 2009; 
Pavlik & Anderson, 2008). For example, in MCM, memory decay is incorporated through a 
power function in which each item-specific memory trace decays exponentially (Mozer et al., 
2009). This model was then used to determine optimal practices to yield the highest retention 
of material in a classroom. Similarly, a study was conducted to measure and compare the 
relearning of forgotten material by three computational models, all of which incorporate a 
component of decay over time in its prediction equation (Walsh et al., 2018).  

There is increasing evidence that knowledge retention can be enhanced through 
methods such as distributed learning, which sequences learning such that concepts are 
practiced in a distributed schedule over time rather than with massed schedules where 
practice attempts related to the same set of skills occur in quick succession. Research in this 
area has demonstrated that both time elapsed between practices of the same material and 
time elapsed between final study episode and an exam affect final-test retention (Wiseheart 
et al., 2006). Work has attempted to use models to determine optimal spacing, such as (Mozer 
et al., 2009; Pavlik & Anderson, 2008), each of which introduced a model that can predict the 
influence of specific study schedules on retention for specific items. Knowledge tracing 
algorithms incorporating spacing effects into learner models (e.g. Walsh et al., 2018; Pavlik et 
al., 2021) have been used for an increasing number of applications, including the adaptive 
sequencing of practice (Eglington & Pavlik, 2020). In total, there is considerable evidence that 
spacing is important for long-term retention of knowledge. Within this paper, we investigate 
different variations on how to represent the spacing effect in knowledge estimation, analyzing 
how these models perform for different representations of memory decay, through altering the 
rate and strength of decay over time. 
 
2.2 Performance Factor Analysis 
 

Performance Factor Analysis (PFA) is a knowledge tracing algorithm (Pavlik et al., 
2009) that can be used with multi-skill items, in contrast to some of its extensions which only 
work for single-skill items (Galyardt & Goldin, 2014). PFA has been successful at predicting 
both knowledge within the learning system and latent knowledge carried outside the system 
(Scruggs et al., 2020). Our proposed algorithm and experiments use PFA as a baseline model. 

The original PFA model predicts the performance of a student on a given item/problem, 
at a given time. It does this by using the student’s past number of successes, multiplied by a 
weight γ fit to each of the item’s skills; a student’s past number of failures, multiplied by a 
weight ρ fit to each of the item’s skills; a weight β which represents the difficulty of an item. 
Depending on the variant of PFA, β is either applied across all contexts, across all items linked 
to the current skill (the most common approach and what we will use here), across all items 
of the same “item-type”, or for individual items. These features are inputted into a logistic 
function to obtain a prediction, p m , which gives the probability of success for a given student 
on a given (future) item.  The PFA formula is given below: 

𝑚 𝑖;  𝑗 ∈ 𝐾𝐶; 𝑠;  𝑓 β γ 𝑠 , ρ 𝑓 ,

 

∈

                                                    𝑝 𝑚
1

1 𝑒
 

where 𝑖 represents a student, 𝐾𝐶 are the knowledge components (i.e. skills) linked to the item,  
𝑗 represents a skill. Parameters β , γ  and ρ  are the learned parameters for skill 𝑗.  

The PFA model in its original form does not incorporate the notion of memory decay. 
All previous practices are given the same weight, regardless of the time or order in which they 



took place. As discussed above, some previous studies have incorporated the notion of 
memory decay into their knowledge tracing models. Doing so addresses the phenomenon that 
memory fades with the passage of time. Ignoring decay may be temporarily safe when practice 
sessions are massed (as in some intelligent tutoring systems) but will lead to less accurate 
inference when the student’s work on a skill is spread out over time. 
 
3. Related Work 
 

A variety of knowledge tracing frameworks and models have been proposed and 
studied. This includes methods based on Hidden Markov Models such as Bayesian 
Knowledge Tracing (BKT) (Corbett & Anderson, 1995), which models a student’s latent 
knowledge of knowledge components as a set of binary variables which represent mastery or 
lack of mastery of each concept, and neural network models such as Deep Knowledge Tracing 
(Piech et al., 2015), which uses RNNs (recurrent neural networks) to learn concept patterns 
using long-short term memory (LSTM) without human annotations. There are also recent 
efforts to combine knowledge tracing and Item Response Theory (Oeda & Asai, 2016; Khajah 
et al., 2014b) with a decay effect, modeled as elapsed time and a forgetting parameter. 

In the last few years, extensions to these categories of models have attempted to 
include item recency/decay. Researchers demonstrated that by adding a forgetting parameter 
to BKT, the algorithm is more sensitive to the effect of interspersed trials (Khajah et al., 2016). 
Another variant of BKT called Multistate BKT (Argawal et al., 2020) incrementally increases 
the weight of newer attempts. In Attentive Knowledge Tracing (Ghosh et al., 2020), 
researchers implemented a monotonic attention mechanism that uses an exponential decay 
curve to downweight past questions. DAS3H (Choffin et al., 2019) modeled both learning and 
forgetting curves, using factorization machines to handle multiple skills tagging. Learning 
Process-consistent Knowledge Tracing (LPKT) (Shen et al., 2021) models the student learning 
process as a set of tuples which includes the time series information of the assignments, 
thereby embedding both the answer time as well as the interval between activities. 

Previous research has investigated variations of PFA that incorporate decay into their 
mastery predictions. One such model, PFA-Decay (Gong et al., 2011), took practice order into 
account using a decay factor δ (0 < δ <= 1) raised to a power representing the distance in 
practice number, and multiplied to the counts of successes and counts of failures.  Another 
modification of PFA, Recent-PFA (R-PFA), incorporated memory decay into the model’s 
performance prediction in the form of a weighted proportion of success, with weight being 
dependent on the recency of the practice (Galyardt & Goldin, 2014). However, R-PFA does 
not take time specifically into account; it just considers practice order. R-PFA modifies the PFA 
formula by replacing the total number of failed practices, 𝑓 , with the total number of all 
practices thus far (essentially equaling 𝑓 𝑠 ), and replacing the total number of successful 
practices  𝑠   with a component, 𝑅 , that incorporates the notion of memory decay:  

𝑅
∑ 𝑏 𝑋

∑ 𝑏
 

where 𝑏 ∈ 0,1  represents the decay factor, and 𝑋  represents the outcome of practice p (1 
if successful and 0 if failed) for student i on skill j. In the original R-PFA paper, authors used 
three ghost/synthetic practices (Galyardt & Goldin, 2014). 

Note that in the first R-PFA paper each item was linked to a single skill, losing one of 
the main original benefits of PFA. To the best of our knowledge, there is no previous work on 
extending R-PFA to create a variation which can handle data containing multi-skill items. 
However, recency has been considered, including adding time-based weights to components 
of existing models and incorporating a weighted proportion for failures (Pavlik et al., 2021). 

Further work is seen in Logistic Knowledge Tracing (LKT) (Pavlik et al., 2021), a logistic 
regression-based framework that can enable multiple components from different existing 
models, including PFA (Pavlik et al., 2009), PFA-Decay (Gong et al., 2011), R-PFA (Galyardt 
& Goldin, 2014), and PPE (Walsh et al., 2018). LKT showcased a suite of components that 
could be combined to form new models, some of which incorporated the notion of recency and 
decay. Two of the comparison models we implement, Alg1 and Alg2 (described further in 



Section 6), are based on components described in LKT. Important components from (Pavlik 
et al., 2021) that we used in our comparison models are as follows: 
 Intercept for each KC/skill, which is a simple linear model intercept. Used in Alg1 and Alg2. 
 (Alg1) Log performance (logsuc, logfail), which is the log-transformed performance factor 

(the total successes or failures), representing declining marginal returns, e.g. ln(sij) + ln(fij).  
 (Alg2) Exponential decay of proportion, which uses the prior probability correct for each 

knowledge component, as in the R-PFA model. This uses a parameter to describe the 
exponential rate of decay, or recency, for observations of a knowledge component.  

 (Alg2) The LKT version of Recency, defined as the power log decay applied to the time 
interval since the previous encounter with the KC. This feature considers only the just prior 
observation and simulates performance improvement when the prior practice was recent.  

In this paper we propose a model called MemDec that captures memory decay and 
spacing, and compare its performance to PFA, R-PFA, and components of LKT, while 
accounting for multiple skills per item. We implement and analyze two methods of 
incorporating decay through practice order and through time windows. This proposed 
algorithm considers the effects of spacing between practices, thus modeling the spacing effect 
when predicting student performance. It also studies multiple ways of inducing decay, whereas 
previous studies focus only on one method, mostly practice-order. More study of the spacing 
effect in knowledge tracing is warranted. While a few algorithms have utilized the notion of 
time windows (Choffin et al., 2019; Lindsey et al., 2014), their time windows overlap and are 
defined in a relatively restrictive and limited manner. Additionally, (Choffin et al., 2019; Lindsey 
et al., 2014) do not consider time elapsed between practices when modeling spacing, whereas 
our proposed model MemDec Spacing considers the time elapsed between each current and 
previous practice, which we believe is crucial for modeling spacing accurately. Also, in 
MemDec, this is done for both practice-order and time-window variations. For MemDec and 
MemDec Spacing with time windows, we decay the weight of a practice based on the time 
window the practice falls into. Using equivalent, disjoint time windows allows for consistency 
in the exponential rate of decay through time. Additionally, we conduct an in-depth analysis 
on the impact of changing the decay factors and the number of ghost practices. 
 
4. MemDec Algorithm 
 
4.1 MemDec (PFA Memory Decay) 
 

We propose a new model, MemDec, a variation of the PFA algorithm inspired by R-
PFA components, that can also be seen as fitting within the LKT framework. In MemDec, 
memory decay is applied to both successful and failed practices, and the model can be used 
with multi-skill items (whereas the original R-PFA only supports single-skill items).  

In addition to this, we build on the approach in (Maier et al., 2021), which splits skills 
into “common” or “rare” categories, so that it can be applied for learning systems where some 
skills are rare. Rare skills can occur when – for example -- items are tagged with skills that 
represent prerequisites not taught in the courseware. When training PFA with datasets 
containing rare skills, several challenges including degenerate parameters can occur (Maier 
et al., 2021). Depending on how rare some skills are, there might not be enough data points 
to precisely estimate parameters when training a model. (Maier et al., 2021) proposes a PFA 
variant that splits out common and rare skills. When training a model, each common skill has 
its own set of parameters, while all rare skills are combined into a single common set of default 
parameters, improving predictions and reducing model degeneracy (Maier et al., 2021). 

The formula for MemDec is given below (note that as for PFA and R-PFA, 𝑚 will be 
inputted into a logistic function to obtain a prediction, 𝑝 𝑚 ):  

𝑚 𝑖, 𝑗,𝐾𝐶,𝑅𝑆,𝑅𝐹 𝛽 𝛾 𝑅𝑆 𝛿 𝑅𝐹 𝛽 𝛾 𝑅𝑆 𝛿 𝑅𝐹  
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∑   
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Where 𝑖 represents a student, 𝑗 represents a skill, 𝑡  is the current trial (i.e. practice) number 
student 𝑖 is on with skill 𝑗. 𝑋  represents the correctness of the practice (i.e. it is 1 if student 
𝑖’s practice p with skill 𝑗 was successful, and 0 otherwise). Constant 𝑏 ∈ 0,1  is the decay 
rate for successful practices, and constant 𝑏 ∈ 0,1  represents the decay factor for failed 
practices. RS and RF represent the recency-weighted proportions of past successes and past 
failures, respectively. The values for 𝛽 , 𝛾  and 𝛿  are parameters that are learned for each 
skill 𝑗 during the training. Parameters 𝛽 , 𝛾  and 𝛿   are the default parameters learned for the 
rare skills. Only one value is learned for each parameter for the set of rare skills. 

Like R-PFA, MemDec can incorporate ghost/synthetic practices (imaginary practices 
that improve model performance initially) in the RS and RF formulas. To allow for ghost 
practices, we start p from a negative number (instead of starting from 0). In the original R-PFA 
formula, the authors proposed three ghost practices (all failed practices). As in LKT, we 
investigate using no ghost practices, two ghost practices (one successful and one failed), and 
three ghost practices (all failed). The main differences between R-PFA and the MemDec base 
variant is that MemDec does not use a total term; instead, it contains a component that takes 
into consideration the weighted proportion of failed practices, giving more weight to recent 
ones. Also, MemDec can handle multi-skill items whereas R-PFA is designed for only single-
skill items. Additional, R-PFA only considered a practice order approach, whereas one 
MemDec variant considers a time window approach. 

In MemDec, as in most models that incorporate the notion of decay, the order of 
practices plays an important role. Every time the student completes a new practice, the model 
introduces more decay to previous practices. This means that the more practices the student 
has, the more decay is applied to older practices. In this approach, while decay is incremented 
by more practice, the time elapsed between practices does not affect the calculation of decay.  

Practices can be separated by different amounts of time, from seconds to months. It is 
unlikely that substantial forgetting will occur with small amounts of elapsed times, such as 
seconds or minutes. This could be a limitation to the practice-order approach, if the amount of 
elapsed time can vary considerably. Thus, we propose a variation of MemDec that uses a time 
window, a constant duration of time (for example: 1 day) in which items answered within the 
same time window are given equal decay. This accounts for memory decay not occurring 
instantaneously. Practices answered in time windows farther from the current practice can be 
expected to have decayed more than practices from more recent time windows. For this 
variant, MemDec's RS and RF formulas become:  

𝑅𝑆
∑ 𝑏 𝑋  

∑ 𝑏  
 

𝑅𝐹
∑ 𝑏 1 𝑋  

∑ 𝑏  
 

4.2 MemDec Spacing 
 

The spacing effect has to do with the temporal distribution of practices linked to the 
same skill. If minimal time has elapsed between practices, the learning is said to be massed. 
Existing research suggests that if practices are spaced out, information is retained longer in 
memory (Pavlik & Anderson, 2005). In this section, we investigate an extension of MemDec 
that incorporates the notion of the spacing effect into knowledge estimation. The MemDec 
model was adjusted to use 𝑏  values that are calculated based on a formula which takes into 
account how spaced apart practices are. The values of 𝑏  are calculated in a similar manner: 



𝑏 𝑡
𝑏 ,   𝑖𝑓 𝑛𝑜 𝑝𝑟𝑒𝑣 𝑝𝑟𝑎𝑐𝑡𝑖𝑐𝑒𝑠, 𝑜𝑟 𝑒𝑙𝑎𝑝𝑠𝑒𝑑 𝑡𝑖𝑚𝑒 0 

min 𝑏 log 𝑡𝑖𝑚𝑒 𝑡 𝑡𝑖𝑚𝑒 𝑡 1 , 𝑏 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

𝑏 𝑡
𝑏 ,   𝑖𝑓 𝑛𝑜 𝑝𝑟𝑒𝑣 𝑝𝑟𝑎𝑐𝑡𝑖𝑐𝑒𝑠, 𝑜𝑟 𝑒𝑙𝑎𝑝𝑠𝑒𝑑 𝑡𝑖𝑚𝑒 0 

min 𝑏 log 𝑡𝑖𝑚𝑒 𝑡 𝑡𝑖𝑚𝑒 𝑡 1 , 𝑏 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 
where 𝑏 ∈ 0,1  and 𝑏 ∈ 0,1  represent the min and the max values that we allow for 
𝑏 . Constants 𝑏 ∈ 0,1  and 𝑏  ∈ 0,1   represent the min and the max values that can 

be used for 𝑏 . Constant 𝑧 is the base of the logarithm, and expression 𝑡𝑖𝑚𝑒 𝑡
𝑡𝑖𝑚𝑒 𝑡 1   calculates the elapsed time between the current practice with skill j and the 
previous practice with skill j performed by student i. Note that if the student has no previous 
practices with a skill, or the elapsed time is 0 (elapsed time of 0 can occur in real systems if 
timestamps are not captured at enough granularity), then we assign the minimum values. 
MemDec Spacing could be used with either practice order (p.o.) or with a time window.  
 
5. Dataset 
 

For the experiments presented in this article, we used data from Reveal Math Course 
1, a McGraw-Hill digital math product that covers grade 6 US math curriculum.  The items from 
the assessments from this data are tagged with one or more skills. The data we used came 
from two Midwestern school districts and one Southwestern school district. One of these 
school districts is within a large U.S. city where over half of students are classified as Black, 
around 10% of students are classified as Hispanic, and a fifth of families live under the poverty 
line. A second district is within a small town where around 5% of students are classified as 
Black, around 90% of students are classified as White, and around 10% of families live under 
the poverty line. A third is within a larger town where just over half of students are classified 
as Hispanic, just under half of students are classified as White, and about ¾ of families live 
under the poverty line. All use the NGA Center/CCSSO Common Core Standards.  

Extracted data spans between August 2019 and May 2021. There are 4,363 unique 
items; 2,009 are tagged with multiple skills. The items include multiple choice, fill in the blank, 
and entering equation items. Overall, the dataset had 71 unique skills which were linked to the 
items from the dataset. Out of these skills, 42 were classified as common (at least 200 students 
with at least 3 practices – Maier et al., 2021) and the remaining 29 were classified as rare.  

The dataset has 489,359 datapoints. Datapoints represent students’ responses and 
their normalized scores (1 if the response is correct, 0 if incorrect). 1.25% of the datapoints 
contained a partially correct score, which were treated as 0 for the purposes of this analysis. 
For the experiments, we split our dataset into training and testing sets. We randomly selected 
about 20% of the students (647 students, 98,604 data points, 64 skills) for the testing set, 
leaving 80% of the students (2,588 students, 390,755 data points, 71 skills) for training. 
 
6. Experimental Results 
 

For validation, we ran several experiments using the proposed approaches from this 
article, as well as other existing algorithms. For comparison reasons, we implemented the 
original PFA (Pavlik et al., 2009) with adjustments to handle rare skills as described in (Maier 
et al., 2021). We call this the Baseline model. We also implemented other algorithms to 
benchmark against MemDec and MemDec Spacing:  R-PFA (Galyardt & Goldin, 2014), and 
two algorithms that were inspired by models from LKT (Pavlik et al., 2021). We provide 
information on those in the Comparison Models sub-section. For all models, we allowed for 
multi-skill items by using a summation factor across multiple skills linked to an item.  

In an effort to study the differences and the effectiveness between each model, we 
calculated the AUC and RMSE validation metrics. Also, we present validation results for 
different groups of datapoints within the testing dataset: “all data” means we validated against 
all datapoints; “1+ non-default” means that we only used datapoints for which the item was 



linked to at least one common skill; “only non-default” means we only used datapoints whose 
items were linked with exclusively common skills; “1+ default” means we only used datapoints 
whose items were linked to at least one rare skill; and “only default skills” means datapoints 
with items solely tagged to rare skills. 
 
6.1 Baseline Results 
 

We trained a model that learned three parameters for each of the 42 common skills and 
three parameters for the rare skills. The validation results are presented in Table 1 below: 
 
Table 1. Baseline PFA and MemDec 
 

 
6.2 MemDec Models Results 
 

To study the difference between methods used to govern the increase in decay, we 
implemented and tested a variation of MemDec that used the practice-order approach, as well 
as a variation that used the time-window method. For the decay factors 𝒃𝒔 and 𝒃𝒇 we tried 
several combinations of values from (0,1]. While other combinations gave similar results, the 
best were obtained with 𝒃𝒔= 0.6 and 𝒃𝒇= 0.7. We present this model’s results in Table 1. We 
observe a significant improvement when compared with the Baseline model. By incorporating 
the notion of memory decay, MemDec achieved an AUC of about 0.77 on all testing 
datapoints, whereas the baseline reached only an AUC of about 0.7. Significant improvements 
were observed in all other categories of datapoints, except for categories involving default 
skills, for which the two models achieved similar performance, likely because rare skills do not 
contain enough datapoints in the dataset for our model to substantially learn from. 

We also ran experiments with a time-window of 14d (14 days), 7d, 2d, and 1d (see 
Table 2). The best results were observed for a 1d time window with an AUC equaling 0.756 
across all datapoints from the testing set, which is slightly lower than the AUC of the practice-
order model. The 2d window model obtained an AUC of 0.754 for all data, the 7d window an 
AUC of 0.749, and the 14d window model an AUC of 0.747. This demonstrated that for this 
dataset, the model that uses the practice-order approach performs slightly better. For the time-
window variation we observed that the smaller the window, the better the results.  
 
Table 2. MemDec, with time-windows of different sizes 
 

Category AUC, RMSE (1d) AUC, RMSE (2d) AUC, RMSE (14d) 
All data 0.7561, 0.4126 0.7541, 0.4134 0.7468, 0.4166 

1+ non-default  0.7557, 0.4124 0.7536, 0.4132 0.7462, 0.4164 
Only non- default  0.7557, 0.4119 0.7536, 0.4127 0.746, 0.416 

1+ default  0.7564, 0.4346 0.7552, 0.4343 0.7556, 0.4357 
Only default  0.8053, 0.4287 0.8018, 0.4294 0.7992, 0.4311 

 
To study whether modeling a combination of both decay and spacing could further 

improve the predictions, we ran experiments with the MemDec Spacing model. We 
experimented with different values for the hyperparameters which represents the lower and 
upper bounds of the decay factor, and for practice order we obtained very similar results 
compared to the non-spacing practice order MemDec models. By applying practice order and 

Category 
# of Data 

Points 
AUC, RMSE 
(Baseline) 

AUC, RMSE  
(MemDec Practice Order) 

All data 98604 0.6975, 0.4443 0.7679, 0.4076 
1+ non-default  97460 0.6959, 0.4446 0.7675, 0.4074 

Only non-default  95859 0.6952, 0.4444 0.7677, 0.407 
1+ default  2745 0.7554, 0.4417 0.7628, 0.431 

Only default  1144 0.8083, 0.4163 0.8077, 0.4244 



parameters (𝑏  = 0.55, 𝑏  = 0.65, 𝑏 0.7, 𝑏 0.7, log log  ), shown in Table 
3 left column we obtained a slightly better result than MemDec without spacing, with an overall 
AUC of 0.768.  For this approach and time window of 1d (1 day) the AUC was 0.756, which is 
slightly lower than the AUC when using practice-order (p.o.). Large time windows performed 
more poorly still. Overall, with time windows, MemDec Spacing gave slightly poorer results 
than the MemDec model. This finding may be due to certain properties of the dataset we use. 
Many datapoints are not spaced apart more than a few seconds in time, which would cause 
incorporating the effects of spacing (through time windows) to have negligible effects on the 
model’s calculation of student knowledge. When using practice order to represent decay, the 
effect of spacing seems to be negligible. It is possible that if a different dataset with more 
widely spaced practices is used, the effect of spacing on MemDec with practice order might 
be more beneficial. In Section 7 we will discuss the interpretation of these results further. 
 
Table 3. MemDec Spacing, with params (𝒃𝒔𝒎𝒊𝒏  = 0.55, 𝒃𝒔𝒎𝒂𝒙  = 0.65, 𝒃𝒇𝒎𝒊𝒏 𝟎.𝟕,𝒃𝒇𝒎𝒂𝒙 𝟎.𝟕) 

Category AUC, RMSE (p.o.) AUC, RMSE (1d) AUC, RMSE (7d) 
All data 0.768, 0.4076 0.7558, 0.4127 0.7492, 0.4156 

1+ non-default  0.7675, 0.4074 0.7554, 0.4125 0.7487, 0.4155 
Only non- default  0.7678, 0.407 0.7554, 0.4121 0.7485, 0.4151 

1+ default  0.7635, 0.4307 0.7569, 0.4347 0.7559, 0.4351 
Only default  0.8087, 0.4245 0.8038, 0.4291 0.7992, 0.431 

 
6.3 Comparison Models  
 

We compare our models with R-PFA (Galyardt & Goldin, 2014), as well as two 
algorithms that incorporate components from LKT (Pavlik et al., 2021), which we call Alg1 and 
Alg2. The 𝑚 function of each model is inputted into the sigmoid function, to get a probability 
value between 0 and 1. Alg1 contains a recency component that captures the elapsed time (t) 
between current and previous practice of the student i with skill j raised to a decay factor d. It 
also takes the natural logarithm of the number of successes 𝒔𝒊,𝒋 and number of failures 𝒇𝒊,𝒋. 
Alg2 contains a component that uses a weighted proportion of previous practices along with 
a parameter b that represents the exponential rate of decay, and ghost parameters.  

 
Alg1: 𝒎 𝒊;  𝒋 ∈ 𝑲𝑪; 𝒔;  𝒇 ∑ 𝛃𝒋 𝛄𝒋𝐥𝐧 𝒔𝒊,𝒋 𝛒𝒋𝐥𝐧 𝒇𝒊,𝒋 𝜶𝒋𝒕𝒊,𝒋

𝒅 
𝒋∈𝑲𝑪  

Alg2: 𝒎 𝒊;  𝒋 ∈ 𝑲𝑪; 𝒔;  𝒇 ∑ 𝛃𝒋 𝛄𝒋  
∑ 𝒃 𝒕 𝒑𝒕 𝟏
𝒑 𝟐 𝑿𝒊𝒋𝒑
∑ 𝒃 𝒕 𝒑𝒕 𝟏
𝒑 𝟐

 
𝒋∈𝑲𝑪  

 
Because many of these models used two (1 failed, 1 successful) ghost practices, or 

three (3 failed) ghost practices, we also implemented and ran experiments with MemDec and 
MemDec Spacing using this combination of two or three ghost practices. For MemDec, the 
presence of ghost practices had a negligible influence on results. The results of R-PFA with 
different numbers of ghosts (successes and failures) are given in Table 4. These findings show 
that MemDec significantly outperformed R-PFA, regardless of the number of ghost practices. 
The number of ghost practices did not seem to have a major influence on the R-PFA results. 
Alg1 performed better than R-PFA, with an AUC of 0.7234 for all test data points. Alg2, with 
both two and three ghost practices, performed better than Alg1, with an overall AUC of 0.747 
for two ghost practices and 0.739 for the model with three ghost practices. These results, 
shown in Table 5, are still worse than MemDec and MemDec Spacing. 

 
Table 4. R-PFA (𝒃𝒔= 0.6), for different success and fail ghost practices, AUC, RMSE 

Category 3 ghost (0s, 3f) 2 ghost (1s, 1f) 0 ghost 
All data 0.6065, 0.4639 0.6067, 0.4638 0.6067, 0.4638 

1+ non-default  0.6051, 0.4637 0.6053, 0.4636 0.6053, 0.4636 
Only non- default  0.6069, 0.463 0.6071, 0.463 0.6071, 0.463 

1+ default  0.574, 0.492 0.574, 0.492 0.5743, 0.4919 
Only default  0.7614, 0.4802 0.7614, 0.4802 0.7615, 0.4801 



 
Table 5. Alg1 and Alg2, AUC and RMSE 

Category Alg1, 0 ghost Alg2 (1s, 1f) 0 ghost 
All data 0.7235, 0.4258 0.7471, 0.4208 0.7395, 0.4227 

1+ non-default  0.7223, 0.4258 0.7469, 0.4205 0.7387, 0.4226 
Only non- default  0.7224, 0.4253 0.7476, 0.4199 0.7395, 0.422 

1+ default  0.7492, 0.4438 0.735, 0.4509 0.7279, 0.4485 
Only default  0.8234, 0.428 0.8294, 0.4489 0.8191, 0.4355 

 
Overall, MemDec and MemDec Spacing outperformed all other models implemented 

in this study, including PFA, R-PFA, Alg1, and Alg2. We find that the practice-order variation 
of MemDec Spacing and MemDec provided the best predictions, with a minimal higher 
performance seen in MemDec Spacing. Both were followed by the time-window MemDec 
variation with a slightly more significant difference. While MemDec Spacing with time-window 
was outperformed by MemDec with time-window, it was still more effective than any other 
tested models in this experiment. The practice-order model was able to estimate student 
knowledge much more accurately than Baseline PFA or R-PFA. Additionally, within the 
MemDec variants, practice-order models were more effective than time-window models, and 
ghost practices had a negligible effect on performance predictions. 
 
7. Discussion and Conclusions 
 

In this work we studied the cognitive science concepts of memory decay and the spacing 
effect in the context of variants of the Logistic Knowledge Tracing framework. We created a 
new algorithm called MemDec which expands on R-PFA, a variation of PFA that incorporates 
decay. Despite the early emphasis on multi-skill items being a strength of PFA (Pavlik et al., 
2009), to the best of our knowledge, there is no previous work on R-PFA or other time-involved 
extensions that looked at data containing multi-skill items, although components in LKT can 
handle multi-skill items (Pavlik et al., 2021). Addressing this limitation increases the algorithm’s 
relevance to real-world educational systems where items are associated with multiple skills. 
We further expanded MemDec to capture the spacing effect in our model MemDec Spacing.  

We also studied different ways of modeling decay, through the order of practices and by 
intervals of time elapsed between practices (time windows). To the best of our knowledge 
previous extensions of PFA and LKT components mostly focused on a practice-order 
approach. We tested whether different values of the decay factor led to improved model 
predictions, in all variations. Our new algorithms were compared against two comparison 
algorithms based on LKT components, Alg1 and Alg2, as well as against PFA and R-PFA.  

The results of this study showed that MemDec and MemDec Spacing outperformed all 
other comparison models. Practice-order MemDec variations showed better results than time-
window variations. We investigated different time window sizes, from 1d to 14d windows, and 
found that smaller time-windows achieved better results. The study also found that modeling 
decay with the spacing effect did not seem to provide an advantage over solely modeling 
decay. For practice-order, MemDec Spacing performed slightly better than MemDec. Across 
time windows, MemDec outperformed MemDec Spacing by a small amount.  

However, these findings may be due to the relatively massed nature of the current dataset. 
Therefore, it may be valuable for future work to compare these models within datasets 
containing more spaced items, to determine whether the time-window approach could be 
beneficial over practice-order in this situation. This would also show whether incorporating the 
spacing effect along with decay can have a bigger impact on prediction for such datasets.  

Another area of future work involves looking into how well the approaches presented 
perform at predicting retention long-term. Finally, future work in this area may benefit from 
going beyond simply assessing predictive goodness to assessing the practical implications of 
when instructors are told a student has mastered a skill, when in fact they have forgotten it.  

Overall, the fact that MemDec and MemDec Spacing outperformed the other models 
highlights the importance of capturing cognitive science principles such as memory decay and 
spacing when modeling student knowledge and predicting future performance. The analysis 



conducted also showcases the difference in model performance between increasing decay by 
either order or through time. The results show that the proposed models are suitable 
knowledge tracing approaches for real-world adaptive learning systems with multi-skill items, 
where the real possibility of students forgetting skills can significantly impact the results. 
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