Mining Big Data in Education: Affordances and Challenges

Christian Fischera, Zachary A. Pardosb, Ryan S. Bakerc, Joseph Jay Williamsd, Padhraic Smythe, Renzhe Yue, Stefan Slatere, Rachel Bakere, Mark Warschauere

a University of Tübingen, Germany
b University of California, Berkeley, United States
c University of Pennsylvania, United States
d University of Toronto, Canada
e University of California, Irvine, United States

\textbf{Acknowledgements:} This work is supported by the National Science Foundation through the EHR Core Research Program (ECR), Award 1535300. The views contained in this article are those of the authors, and not of their institutions or the National Science Foundation.
Christian Fischer (corresponding author)
University of Tübingen
Hector Research Institute of Education Sciences and Psychology
Europastraße 6, Room 404
72072 Tübingen, Germany
E: christian.fischer@uni-tuebingen.de

Christian Fischer is an Assistant Professor of Educational Effectiveness at the Hector Research Institute of Education Sciences and Psychology at the Eberhard Karls University of Tübingen, Germany. His research examines approaches to improve STEM teaching and learning. In particular, he is interested in how digital technologies may help to increase educational effectiveness for all learners.

Zachary A. Pardos
University of California, Berkeley
2121 Berkeley Way, Suite 4232
Berkeley, CA 94720
E: pardos@berkeley.edu

Zachary Pardos is an Assistant Professor at the University of California, Berkeley in the Graduate School of Education and School of Information. He directs the Computational Approaches to Human Learning (CAHL) research lab and teaches courses on data mining and analytics, digital learning environments, and machine learning in education. His focal areas of study are knowledge representation and personalized supports leveraging big data in education.

Ryan Shaun Baker
University of Pennsylvania
Graduate School of Education
3700 Walnut St.
Philadelphia, PA 19104
E: rybaker@upenn.edu

Ryan Baker is an Associate Professor at the University of Pennsylvania, and Director of the Penn Center for Learning Analytics. His lab conducts research on engagement and robust learning within online and blended learning, seeking to find actionable indicators that can be used today but which predict future student outcomes. He was the founding president of the International Educational Data Mining Society, is currently serving as Editor of the journal Computer-Based Learning in Context, is Associate Editor of two journals, was the first technical director of the Pittsburgh Science of Learning Center DataShop, and currently serves as Co-Director of the MOOC Replication Framework (MORF).
Joseph Jay Williams
University of Toronto
Department of Computer Science
40 St. George Street, Room 7224
Toronto, ON, Canada
E: williams@cs.toronto.edu

Joseph Jay Williams is an Assistant Professor in the Department of Computer Science at the University of Toronto. His research combines human-computer interaction and psychology by conducting randomized A/B comparisons in real-world settings. He applies statistics and machine learning methods like multi-armed bandit algorithms to dynamically adapt randomized A/B comparisons to enhance and personalize the experience for future people, balancing practical impact with conducting scientific research.

Padhraic Smyth
University of California, Irvine
Bren School of Information and Computer Sciences
4216 Bren Hall
CA 92697-3435
E: smyth@ics.uci.edu

Padhraic Smyth is a Chancellor's Professor in the Department of Computer Science at the University of California, Irvine, with co-appointments in the Department of Education and the Department of Statistics. He is a fellow of the Association for Computing Machinery (ACM) and the Association for the Advancement of Artificial Intelligence (AAAI). His research interests are in machine learning, pattern recognition, and applied statistics.

Renzhe Yu
University of California, Irvine
School of Education
3200 Education
Irvine, CA 92697-5500
E: renzhey@uci.edu

Renzhe Yu is a Ph.D. student in Education at the University of California, Irvine. His research is focused on using big data to model learning processes and contexts to understand and support academic success in higher education. He was a Data Science for Social Good Fellow at the Alan Turing Institute, the University of Warwick and the University of Chicago.
Stefan Slater
University of Pennsylvania
Graduate School of Education
3700 Walnut St.
Philadelphia, PA 19104
E: slater.research@gmail.com

Stefan Slater is a Ph.D. student at the University of Pennsylvania's Graduate School of Education, working in the Penn Center for Learning Analytics with Dr. Ryan Baker. His research includes evaluations of model goodness and model power and the modeling of player learning and player behavior in video games, both educational and non-educational.

Rachel Baker
University of California, Irvine
School of Education
2060 Education
Irvine, CA 92697-5500
E: rachelbb@uci.edu

Rachel Baker is an Assistant Professor of Education at the University of California, Irvine's School of Education. She studies how institutional and state policies affect student behavior and decision making in higher education. Her work focuses on how to support student success, particularly for underrepresented groups, through policy and instruction.

Mark Warschauer
University of California, Irvine
School of Education
3200 Education
Irvine, CA 92697-5500
E: markw@uci.edu

Mark Warschauer is Professor of Education at the University of California, Irvine, where he directs the Digital Learning Lab, and editor in chief of AERA Open. His research focused on the use of digital media to promote diverse learners' literacy development and academic achievement.
Review of Research in Education

Mining Big Data in Education: Affordances and Challenges

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Review of Research in Education</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>RRE-18-0205.R3</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Original Manuscript</td>
</tr>
<tr>
<td>Keywords:</td>
<td>Machine Learning, Big Data, Learning Analytics, Educational Data Mining, Educational Effectiveness</td>
</tr>
<tr>
<td>Abstract:</td>
<td></td>
</tr>
</tbody>
</table>

![SCHOLARONE™ Manuscripts](https://mc.manuscriptcentral.com/rre)
Mining Big Data in Education: Affordances and Challenges

Abstract: The emergence of big data in educational contexts has led to new data-driven approaches to support informed decision making and efforts to improve educational effectiveness. Digital traces of student behavior promise more scalable and finer-grained understanding and support of learning processes that were previously too costly to obtain with traditional data sources and methodologies. This systematic review describes affordances and applications of micro-level (e.g., clickstream data), meso-level (e.g., text data), and macro-level (e.g., institutional data) big data. For instance, clickstream data is often used to operationalize and understand knowledge, cognitive strategies, and behavioral processes in order to personalize and enhance instruction and learning. Corpora of student writing are often analyzed with natural language processing techniques to relate linguistic features to cognitive, social, behavioral, and affective processes. Institutional data is often used to improve student- and administrational decision making through course guidance systems and early warning systems. Furthermore, this chapter outlines current challenges of accessing, analyzing, and using big data. Such challenges include balancing data privacy and protection with data sharing and research, training researchers in educational data science methodologies, and navigating tensions between explanation and prediction. We argue that addressing these challenges is worthwhile given the potential benefits of mining big data in education.

Introduction

In recent decades, the increased availability of big data has led to new frontiers in how we monitor, understand, and evaluate processes in educational contexts, and has informed decision making and efforts to improve educational effectiveness. Although no single unified definition exists, big data are generally characterized by high volume, velocity and variety in the
BIG DATA IN EDUCATION

digital era (Laney, 2001; Ward & Barker, 2013). Compared to earlier generations of data collected through considerable human effort, the prevalent use of digital tools in everyday life generates an unprecedented amount of data (volume) at an increasing speed (velocity) from different modalities and time scales (variety; Laney, 2001; Ward & Barker, 2013). Thus, these data require considerable computing resources and alternative analytical methodologies to process and interpret. The National Academy of Education (2017) states that “in the educational context, big data typically take the form of administrative data and learning process data, with each offering their own promise for educational research” (p. 4).

The emergence of big data in education is attributed to at least two major trends in the digital era. First, recording and storing institutional data in traditional settings has become increasingly digitized, resulting in vast amounts of standardized student information. Specifically, student information systems (SIS) have been widely adopted to store and organize student profile information (e.g., demographics, academic background) and their academic records at school (e.g., course enrollment and final grades). These data traditionally encompass decades of students at an institution, with an institution’s SIS making it possible to manage and analyze those data at scale. Second, learning behaviors that were challenging to record in face-to-face classrooms can now be partially captured by learning management systems (LMS). In most cases, LMS are used by instructors to distribute instructional materials, manage student assignments, and communicate with students. From clicks on course modules to revisions of an essay submission, these timestamped logs easily amount to thousands of data points for an individual student. Beyond SIS and LMS, the variety of innovations in digital learning environments enrich new pedagogical possibilities and, in the meantime, collect students’ digital footprints. This diversity leads to heterogeneous and multimodal data in large volumes.
BIG DATA IN EDUCATION

A broad range of data mining techniques can be utilized for big data in education, which Baker and Siemens (2014) broadly categorize into: prediction methods, including inferential methods that model knowledge as it changes; structure discovery algorithms, with emphasis on discovering structures of content and skills in an educational domain and the structures of social networks of learners; relationship mining, including sequential pattern mining and correlation mining; visualization; and discovery with models, including using models in subsequent analyses.

With their volume, velocity, and variety, all these “big data” represent a high value perspective on learner behavior for multiple fields of education research. Questions that were either costly or even impossible to answer before these data sources were available can now be potentially addressed. Digital traces of student actions promise more scalable and finer-grained understanding of learning processes. Combining behavioral data with surveys or psychological scales, researchers can map action sequences to cognitive traits and test whether observed behavioral traces align with theoretical assumptions and refine theories at a granular level. This rich information has potential to help understand mechanisms of specific policy effects and to address policy-relevant issues. For example, connecting administrative and learning process data can unveil nuances about educational inequities and inform actions in faster feedback cycles. The goal of finding effective instructional approaches comparable to one-to-one tutoring has been sought after for decades, and the magnitude of learning process data makes it possible to personalize learning experiences in new ways.
BIG DATA IN EDUCATION

Framework for the Review

This review describes affordances of big data use in education at three broad levels relevant to educational contexts: the micro-level (e.g., clickstream data), meso-level (e.g., text data), and macro-level (e.g., institutional data).

Micro-level big data are fine-grained interaction data with seconds between actions that can capture individual data from potentially millions of learners. Most micro-level data are collected automatically during interactions between learners and their respective learning environments which include intelligent tutoring systems, Massive Online Open Courses (MOOCs), simulations, or games.

Meso-level big data include systematically collected computerized student writing artifacts during writing activities in a variety of learning environments ranging from course assignments, online discussion forum participation, intelligent tutoring systems, and social media interactions. Notably, meso-level data affords opportunities to naturally capture raw data on learners’ progressions in cognitive and social abilities, as well as affective states.

Macro-level big data comprise data collected at the institutional level. Examples of macro-level data include student demographic and admission data, campus services data, schedules of classes and course enrollment data, college major requirement and degree completion data. While macro-level data are generally collected over multi-year time-spans, they are infrequently updated, often only once or twice per term (e.g., course schedule information, grade records).

Notably, these micro-meso-macro-level categorizations should not be viewed as strictly distinct levels as there can be considerable overlap within each data source. For example, keystroke logs in intelligent tutoring systems represent micro-level data that could provide
insights on writing behavior (e.g., burst writing, editing processes). In turn, content and linguistic features of written texts represent meso-level data that could be analyzed with natural language processing (NLP) approaches. Similarly, social media interactions often entail micro-level timestamps (and sometimes location information) in addition to the meso-level contents of each posting. Also, social media data frequently allow researchers to analyze meso-level relational positioning between users. Another example is college application materials. Essays are frequently a standard component of university application processes that provide both meso-level text data and macro-level institutional data.

Literature Search

Given the fast-growing nature of relevant research, our synthetic review is primarily based on literature in the past five years (2014-2018) while building upon several review and synthesis papers (e.g., Baker & Yacef, 2009; Baker & Siemens, 2014; Pardos, 2017). More specifically, the research communities that examine big data in education increasingly focus on providing policy-relevant insights into education and learning in a variety of learning contexts. Thus, we mostly draw on refereed conference proceedings and peer-reviewed journals from these communities, including the International Conference on Learning Analytics & Knowledge, the International Conference on Educational Data Mining, the International Conference on Artificial Intelligence in Education, the ACM Conference on Learning at Scale, the International Journal of Artificial Intelligence in Education, the Journal of Educational Data Mining, IEEE Transactions on Learning Technologies, and the Journal of Learning Analytics. However, seminal papers from other outlets that are not primarily outlets for big data research (and thus not part of the above list) were also considered based on the authors’ expertise in their respective areas.
BIG DATA IN EDUCATION

Papers included for consideration must be original empirical studies that analyzed real-world data. Thus, papers that described simulation studies, replication studies, and meta-analytic studies were not included in this synthetic review. We did not consider papers that solely report on methodological improvements or conceptual papers. Also, research must be situated in a formal or informal educational context. For instance, research studies that focused on students, teachers, classrooms, learning platforms, schools, or universities were eligible for inclusion in this synthetic review. Regarding analytical strategies, papers that were included needed to utilize data mining techniques, rather than just consisting of qualitative methods or descriptive statistical analyses. Data must be digitally recorded and/or archived at scale. In most cases, this excluded traditionally summative educational data (e.g., surveys, test performance) and new digitized data that are currently less feasible to collect at scale (e.g., data from audio, visual, physiological and neural sensors).

For each paper, we read the abstract and dataset description (if provided) to decide whether they fit the inclusion criteria of this review. Then, studies were examined to verify that they were not subject to the exclusion criteria. The remaining studies were categorized as micro-, meso-, and macro-level studies. Notably, a study may be assigned more than one category. In total, we identified 370 papers eligible for the section on micro-level big data, 175 eligible for meso-level big data, and 57 eligible for macro-level big data, as well as about 200 short papers. Papers included in the list of potentially eligible studies were carefully reviewed by experts on the author team in their respective area of expertise to identify and synthesize larger conceptual themes.
Micro-Level Big Data

Micro-level big data in education consists of data that can occur at the granularity of seconds between actions. Although multi-modal data are increasingly commonly used in learning analytics (Ochoa & Worsley, 2016), the majority of micro-level data used in education consists of data produced by exchanges between learners and data collection platforms in MOOCs, intelligent tutoring systems, simulations, or serious games. This type of data includes information about both learner’s actions and the context in which those actions occur. Often, this data is not large in terms of numbers of students, in many cases only hundreds of students, but the volume of data they produce is often quite large, ranging from tens of thousands to millions of data points. In some cases, models are developed for and applied to hundreds of thousands of students, bringing the total data size to billions of data points.

The nature and grain size of micro-level clickstream data make it well-suited to situations where direct intervention might be useful, such as providing students with scaffolding or feedback based on their cognitive or affective states, or moving students to a new topic on a knowledge component when they are ready. The scale of clickstream data also facilitates its use across large numbers of contexts and situations such as studying the development of student learning and engagement over the scale of months, or differentiating between student groups who are too rare to show up in small samples.

Micro-level data are often used to detect cognitive strategies, affective states, or self-regulated learning behaviors, and sometimes validated based on real-time observations of student actions (Pardos et al., 2014; Botelho et al., 2017; DeFalco et al., 2018) or retrospective hand-coding of data subsets (Gobert et al., 2012). Then, these detectors are utilized to study the construct (Pardos et al., 2014; Sao Pedro et al., 2014; Toth et al., 2014) and drive automated
BIG DATA IN EDUCATION

intervention (Aleven et al., 2016; Moussavi et al., 2016; DeFalco et al., 2018). This two-step process necessitates the identification of constructs of interest, either through quantitative coding or obtaining labels in another fashion (e.g., self-report), and the construction of a machine-learned model that can accurately identify the presence and absence of the construct.

In this section, we review research that used micro-level data to operationalize and understand (a) knowledge components, (b) meta-cognition and self-regulation, and (c) affective states, as well as to evaluate (d) student knowledge. We also consider how micro-level data mining can identify (e) actionable knowledge to enhance instruction and learning, and (f) how to personalize digital educational resources.

Identifying Knowledge Components

There has been considerable prior work on using micro-level data to make inferences about how student performance relates to complex cognitive skills within learning activities. Complex cognition has historically been difficult to infer at scale, but new data mining methods made it possible to model and track it over time. Hundreds of students typically generate vast numbers of interactions ranging from magnitudes of ten thousand to millions of interactions. Automated detectors that identify students’ behavioral patterns have been developed and applied to data sets to identify the degree to which students transferred their knowledge of scientific inquiry between domains and to improve outcomes, driving automated scaffolding aimed at improving students’ ability with these skills (Moussavi, Gobert, & Sao Pedro, 2016; Sao Pedro et al., 2014). This work was followed by considerable interest in studying problem-solving strategies. For instance, Toth and colleagues (2014) studied problem-solving within the MicroDYN learning environment and clustered how student strategies developed and shifted over time. Similarly, Bauer, Flatten, and Popović (2017) examined problem-solving approaches
in the scientific discovery game *Foldit* which tasks users with identifying protein structures, a biology research task which is difficult to do in a fully automated fashion. By using visualization to understand the clickstream data produced within the game, the authors identified several common problem-solving strategies, and associated these strategies with players’ performances. Bauer and colleagues noted that understanding these approaches could be used to provide scaffolding that could improve the quality of players’ solutions.

Identifying Metacognitive and Self-Regulated Learning Skills

Within the educational data mining community, many researchers have also studied meta-cognition and self-regulated learning (SRL). These constructs often examine learner’s ability to self-regulate learning processes (Roll & Winne, 2015), behaviors which are especially relevant in less structured systems such as LMS and MOOCs. Samples ranged from ten to tens of thousands of students and included up to a hundred million interactions. Educational data mining approaches to examining SRL often involve modeling the processes and actions that students undertake within learning environments to identify possible scaffolds to encourage learning, which system developers and designers may use to improve user interfaces and experiences (Roll & Winne, 2015; Aleven et al., 2016).

Micro-level clickstream data are uniquely positioned to provide detailed information on students’ temporal and sequential patterns of behaviors based on specific actions students undertake and the system design components students utilize. For instance, Park et al. (2017) explored the development and validation of an effort regulation measure using clickstream data on students’ previewing and reviewing course materials. Students who increased their efforts to review course materials were more likely to pass the course, whereas students who decreased their efforts were less likely to pass the course. Similarly, Park et al. (2018) developed and
BIG DATA IN EDUCATION

validated a time management measure that identifies student procrastination and regularity of procrastination based on student clickstream data in online courses with periodic deadlines. Students who received As had significantly higher time management skills (i.e., regular non-procrastinators) compared to “B” grade students (i.e., irregular procrastinators/irregular non-procrastinators), who had significantly higher time management skills compared to “C/D/F” grade students (i.e., regular procrastinators).

There has also been considerable research into SRL within the Betty’s Brain teachable agent and learning management platform for middle school science (Biswas, Segedy, & Bunchongchit, 2016; Segedy, Kinnebrew, & Biswas, 2015). In Betty’s Brain, students are tasked with teaching a computer agent (Betty) by producing causal maps and models describing science phenomena. Students’ ability to teach Betty is evaluated by a second computer agent, Mr. Davis, who gives Betty quizzes and grades her performance based on how well the students instructed Betty. The Betty’s Brain platform provides SRL support to the students through both computer agents. For instance, Segedy and colleagues (2015) clustered SRL behaviors and investigate their associations with student learning in key domain-specific concepts.

Many studies investigated meta-cognitive and SRL skills in Cognitive Tutors, an intelligent tutoring system for mathematics. A prominent line of SRL research targets help-seeking skills (Aleven et al., 2016). Researchers used micro-level data to develop models of instructional hand-offs (Fancsali et al., 2018), which use student help-seeking behavior and SRL practices to understand how students transition between using different learning resources. For example, Ogan and colleagues (2015) investigated how help-seeking strategies correlated with learning using the same learning system and content in different translations. Lu and Hsiao (2016) studied how student behavior during programming correlates to their help-seeking within
BIG DATA IN EDUCATION

discussion forums and determined that more successful learners read posts in a deeper fashion than less successful learners.

Identifying Affective States

Micro-level data allows to make inferences about “non-cognitive” constructs surrounding engagement, motivation, and affect. The most thoroughly studied constructs are “academic emotions,” also referred to as affective states: frustration, confusion, boredom, and engaged concentration (sometimes called flow). Affective states inspired work on developing affect detectors for various learning environments including intelligent tutoring systems, puzzle games, and first-person simulations (Botelho et al., 2017; DeFalco et al., 2018; Hutt et al., 2019; Sabourin, Mott, & Lester, 2011; Pardos et al., 2014). Detectors are frequently trained on data from hundreds of students with tens of thousands of actions prior to their deployment. Increasingly, this work uses multiple data sources combining quantitative field observations (trained coders observing student behavior during learning and taking systematic notes) and micro-level log data in the development and validation of detectors.

The capacity for educational data mining techniques to identify affective states affords utilization of affective detectors to provide real-time feedback, scaffolding, and interventions to learners. For example, DeFalco and colleagues (2018) used affective detectors in a military training game to address student frustration as students worked through a combat casualty care skill simulation, TC3Sim, for the United States Army. By integrating affective detectors into the game itself, TC3Sim was able to provide feedback messages to students when frustration was identified, leading to improved student learning from pretest to posttest.
Evaluating Student Knowledge

An early application of micro-level clickstream data is the evaluation of student knowledge based on sets of correct and incorrect responses to problems, known as knowledge inference or latent knowledge estimation. Three popular methods are Bayesian Knowledge Tracing (BKT; Corbett & Anderson, 1995), Performance Factors Analysis (PFA; Pavlik, Cen, & Koedinger, 2009), and Deep Knowledge Tracing (DKT; Khajah, Lindsey, & Mozer, 2016). These methodologies use distinct frameworks to infer the degree to which students mastered given skills. The increasing availability of public data sets such as the Cognitive Tutor and ASSISTments platforms, with data sets often as large as thousands or tens of thousands of students and millions of interactions, has helped this work move forward.

BKT, the oldest of these three approaches, estimates student mastery using a Hidden Markov Model (HMM) to estimate four parameters for each unique skill contained within the data: the probability that a given student mastered a given skill before the first opportunity to practice that skill; the probability that a student reaches mastery of a skill after the last opportunity to practice, but before the next one; the probability that a student who has not mastered a skill will guess on a given opportunity to practice; and the probability that a student who mastered a skill will answer a given opportunity to practice with an incorrect answer. The parameters of BKT describe qualities of the skill being learned, such as how likely students are to guess at this skill, or student prior knowledge. Over the last five years, this framework expanded to include item difficulty estimates (Gonzalez-Brenes et al., 2014), answers with partial correctness (Ostrow, Donnelly, Adjei, & Heffernan, 2015), and a wider number of possible states for specific knowledge components (Falakmasir et al., 2015). BKT studies
BIG DATA IN EDUCATION

support basic research, including affect detectors, and underpins adaptivity by several learning platforms such as the Cognitive Tutor (e.g. Liu & Koedinger, 2017).

While BKT uses an HMM to infer student knowledge, PFA (Pavlik et al., 2009) uses logistic regression to estimate three parameters for each unique skill within the data: the degree to which correct answers are associated with better future performance; the degree to which incorrect answers are associated with better future performance; and the overall ease or difficulty of the skill being estimated. These parameters produce an outcome logit, the probability that a student mastered a given skill, given the responses up to that point. Compared to BKT, PFA parameters provide less information on initial knowledge state of learners on a given skill and the predisposition of learners to guess or make careless errors. However, PFA parameters provide insight on the relative difficulty of skills and the relative learning associated with correct and incorrect answers. Extensions of PFA are an active area of research, for instance, to investigate the relative predictive value of recent performance versus older performance (Galyardt & Goldin, 2015), to investigate individual differences in learning rate (Liu & Koedinger, 2015), and to better understand mastery criteria (Kaser et al., 2016).

In the last five years, DKT has emerged as a popular alternative to BKT and PFA. DKT uses recurrent neural networks to model skill knowledge and mastery, producing a vector of the probability of mastery associated with each opportunity to practice a skill. Compared to other approaches, DKT is generally more effective at predicting student correctness during learning (Khajah et al., 2016; Yeung & Yeung, 2018), but it has not been used extensively in the real-world due to limitations around interpretability and stability of estimates (Yeung & Yeung, 2018).
BIG DATA IN EDUCATION

Using Data for Actionable Knowledge

Big data is also used to understand the effectiveness of administrative decisions and educational interventions. Big data models can predict when actions need to be taken for students, such as identifying when students are disengaging from online courses (Le, Pardos, Meyer & Thorp, 2018). For instance, Whitehill et al. (2015), analyzed over 2 million data points generated by over 200,000 students taking ten MOOC courses from HarvardX to develop detectors of whether a student would stop course work. These detectors were then used as the basis of interventions that improved student engagement.

In other circumstances, big data has been utilized to discover what actions are effective, such as analyzing the larger-scale randomized experiments or randomized controlled trials (Liu et al., 2014; Liu & Koedinger, 2017). Approaches such as reinforcement learning (a subfield of machine learning and artificial intelligence) can create a new paradigm for educational experimentation, which attempts to determine which interventions or conditions are effective, for which students, and scale those interventions to future students (Liu et al., 2014; Shen & Chi, 2016). Such dynamic experiments estimate the probability that certain conditions are effective, dynamically reweighting randomization so as to present more effective conditions to future students, converging over time to a better instructional policy for each student (Rafferty, Ying, & Williams, 2018).

Clustering Student Profiles and Discovering How to Personalize

Actionable knowledge can be gained from assessing which actions are appropriate for different subgroups or profiles of students. Prior research examined hundreds of students in school settings, as well as tens of thousands of students in MOOCs. Examples include identifying how different student groups work through a learning simulation as part of an
BIG DATA IN EDUCATION

experimental standardized test (Bergner et al., 2014), modeling how different student groups have different strategies emerge over time in their use of online course resources (Gasevic et al., 2017), and identifying distinct patterns of engagement in MOOCs (Guo & Reinecke, 2014; Kizilcec, Piech, & Schneider, 2013).

Knowledge of subgroups can inform interventions tailored to different student groups. For instance, recurrent neural networks approaches are used to recommend a timely course page predicted to be relevant to learners given their pattern of engagement (Pardos, Tang, Davis & Le, 2017). Similarly, reinforcement learning can be used to discover effective strategies (e.g., problem-solving, worked examples) for low- versus high-knowledge learners (Shen & Chi, 2016). These methods have been used to discover how best to sequence practice problems by testing out many different sequences with large numbers of observations from each student (Clement, Roy, Oudeyer, & Lopes, 2015).

Affordances and Challenges of Micro-Level Big Data

As this section shows, there are many ways that micro-level big data has been used in education. Micro-level data is often voluminous, a single student may produce thousands or tens of thousands of data points. It becomes possible to analyze phenomena that may take place over a matter of seconds. Affect, for instance, is often detected at a 20-second grain size (Botelho et al., 2017; DeFalco et al., 2018; Pardos et al., 2014), but the resultant detectors can then be used to analyze behavior over the course of an entire year (Pardos et al., 2014; Slater et al., 2016). Analyses at the micro-level lend themselves to models which are relatively easy to apply in interventions. Micro-level big data is not without its limitations. Since micro-level big data is easy to collect, many research projects focus solely on it, potentially neglecting important related phenomena which are more coarse-grained. For example, the student knowledge modeling work
BIG DATA IN EDUCATION

has focused almost entirely optimizing immediate prediction, raising possible concerns that these models may be less effective at inferring robust learning which will persist over time (Corbett & Anderson, 1995; Pardos et al., 2014 is a notable exception). Thus, the ease of collecting micro-level big data does not remove the importance of connecting brief phenomena with longer trends in a learner’s development.

Meso-Level Big Data

Meso-level big data primarily relates to corpora of writing. The availability of systematically collected computerized student writing artifacts at scale is growing as academic writing moves from paper to digital texts. Whereas one-time national assessments like the ACT/SAT examinations previously constituted a rare opportunity to gather large writing corpora, submissions of student assignments to LMSs made large corpora of writing accessible.

Beside course assignments, textual data can originate from online discussion forums, intelligent tutoring systems, website databases, programming code, and many other sources. Each meso-level data point is usually collected in time periods that range from minutes and hours. However, an individual may engage in writing activities with varying frequency and regularity. For instance, a student may submit writing assignments every week to LMS over a term to complete a class but engage in social media interactions with varying intensity over the course of multiple years in the course of a degree program.

Prominent approaches to analyze text data at scale use NLP tools to automate analytical processes. Linguistic tools can indicate the clusters of lexical, syntactic, or morphological features in student writing, the patterns of collaborative writing in cloud-based corpora, or the quality of student writing normed on corpora of essays previously scored by human graders. For instance, *Coh-Metrix* (McNamara & Graesser, 2012) reports on linguistics primarily related to
text difficulty by measuring components aligned to discourse comprehension including narrativity, syntactic simplicity, word concreteness, referential cohesion, and deep cohesion. Similarly, the *Linguistic Inquiry and Word Count* (LIWC) tool (Pennebaker, Boyd, Jordan, & Blackburn, 2015) measures psychological constructs including confidence, leadership, authenticity, and emotional tone. Other approaches include social network analysis to generate inferences about relational positionings and grouping approaches such as k-means clustering.

In this section, we review research studies that utilize meso-level data to provide insights into (a) cognitive processes (e.g., cognitive functioning, knowledge, and skills), (b) social processes (e.g., discourse and collaboration structures), (c) behavioral processes (e.g., learner engagement and disengagement), and (d) affective processes (e.g., sentiment, motivation).

Supporting and Evaluating Cognitive Functioning

Studies related to cognitive processes have focused on supporting and evaluating learners’ cognitive functioning, knowledge, and skills, as well as providing instructors with support (e.g., automated student feedback, automated assignment grading). In recent years, the ability to automate evaluations of student learning expanded from multi-choice formats to student writing samples. These studies typically utilize writing samples of hundreds or thousands of students, as well as reading comprehension data sets with hundreds of thousands of interactions. Numerous studies demonstrate that evaluation of student writing can be automated to substantially reduce human effort in grading essays in a range of subjects (e.g., Allen, Likens, & McNamara, 2018; Allen & McNamara, 2015; Head et al., 2017; Lan, Vats, Waters, & Baraniuk, 2015). For instance, Lan and colleagues (2015) examined how to automatically grade open-response questions in mathematics. In this work, mathematical solutions for 4 open response problems into numerical features, which are then clustered into incorrect, partially
correct, and correct solutions. Based on instructor grade assignments for each cluster, student solutions were then automatically graded. Studies found students’ overall linguistic abilities to be associated with student performance in mathematics and other disciplines (e.g., Crossley et al., 2018; Wang, Yang, Wen, Koedinger, & Rose, 2015). For instance, Crossley and colleagues (2018) examined associations between students’ mathematical self-concept, interest in mathematics, written interactions with the learning platform, and performance indicators in a blended-learning mathematics program. In particular, Crossley and colleagues found that NLP-derived features were associated with students’ mathematical identity (self-concept, interest, value) and mathematics ability. These findings encourage the design of early warning systems that flag students who are at greater risk to underperform to instructors. In large lecture courses, these systems may be able to help instructors to better identify students who need additional support.

In addition to evaluations of student work, researchers developed support systems that automated feedback to learners and provided hints to support learning in a variety of domains. For instance, Price, Dong, and Barnes (2016) developed a Contextual Tree Decomposition algorithm to provide students working on programming assignments in an intelligent tutoring system with hints on their next steps. These automatically generated hints effectively guided students toward correct solutions of the programming tasks.

Other research examined how to support instructors with developing assessments by automating the process to evaluate and generate questions. For instance, Wang et al. (2018) used recurrent neural network models to automatically generate open-response questions from textbooks based on the Stanford Question Answering Dataset. Similarly, Harrak, Bouchet,
Luengo, and Gillois (2018) used clustering approaches on medical school lecture questions to provide instructors with suggestions for in-class feedback.

Supporting and Examining Social Processes

Recent studies analyzed dialogue, discussions, and collaboration patterns from online discussion forums, intelligent tutoring systems, and video transcripts to examine social processes. These studies may utilize thousands of students with up to a few million interactions. For instance, Hecking, Chounta, and Hoppe (2016) examined MOOC discussion forum data and found that social and semantic structures influenced interaction patterns and community formation processes. Similarly, Gelman, Beckley, Johri, Domeniconi, and Yang (2016) analyzed user interactions on Scratch, an informal learning environment for block-based programming language. Much like in physical spaces, interest-driven subcommunities emerged over time. Besides fully online learning environments, blended learning formats also provide opportunities for students to engage in collaborative learning. For example, Scheihing, Vernier, Guerra, Born, and Carcamo (2018) studied a micro-blogging platform to identify differences in student interaction patterns. In classroom settings, transcript data from video recordings can be used to automate classifications of classroom discourse structures. For instance, Cook, Olney, Kelly, and D’Mello (2018) examined classroom recording transcripts utilizing speech recognition and NLP to detect a characteristic of effective teaching, the proportion of authentic questions asked in a class session. This finding is mirrored in research that examines and classifies dialogue sequences in intelligent tutoring systems (Dzikovska, Steinhauser, Farrow, Moore, & Campbell, 2014).
Detecting Behavioral Engagement

Studies related to behavioral engagement analyzed student course engagement and resource-seeking behavior often utilizing hundreds of thousands of interactions from up to tens of thousands of students. For example, Epp, Phirangee, and Hewitt (2017) examined communication behavior in online discussions with a particular emphasis on student pronoun use. They found that students in instructor-facilitated courses demonstrated higher levels of interaction and used more personal pronouns, whereas students in peer-facilitated courses exhibited lower levels of engagement and used fewer personal pronouns. Atapattu and Falkner (2018) used NLP on MOOC lecture videos to find that discourse features of the lecture video content are related to student interactions with the videos (e.g., pausing, seeking). Joksimovic and colleagues (2015) examined course-related participation patterns of MOOC students on Twitter, Facebook, and blogs. They found that the discussed topics were similar across social media platforms and that the most prominent topics emerged relatively early in the course.

To better support resource-seeking behavior, Yang and Meinel (2014) mined textual metadata from lecture video audio tracks to assist users in their video browsing and search behavior. Similarly, Peralta et al. (2018) developed a recommendation system that uses metadata to support teachers in the exploration of learning resources on an online platform. Similarly, Slater et al. (2016) evaluated the quality of mathematics problems that were mostly developed by teachers and submitted to an intelligent tutoring system. Notably, Slater and colleagues (2016) examined students engaging in mathematics problems to detect relationships between semantic features of the problems and student learning or engagement, which could guide teachers in both their mathematics problem selection in classrooms and their development of new mathematics problems.
Examining Affective Constructs

Studies that investigated affective constructs examined learners’ self-concept, sentiment, and motivation while engaging in learning opportunities often examining hundreds or thousands of students. For instance, Crossley and colleagues (2018) utilized data from an online tutoring environment by employing NLP tools to identify relationships of learners’ linguistic ability with their mathematics identity (e.g., math value, interest, and self-concept). Similarly, Allen and colleagues (2016) utilized NLP to derive writing characteristics of essays and related them to affective states of engagement and boredom. In MOOC settings, Wen, Yang, and Rose (2014) utilized discussion forum data in Coursera courses to examine learners’ sentiment towards the courses, and to identify relationships between sentiment and course dropout.

Examining learners’ motivations for enrollment in MOOCs, Crues and colleagues (2018) examined responses to open-ended questions about course expectations during MOOC enrollment processes and their relationship with age and gender. Utilizing Latent Dirichlet Allocation and correspondence analysis, they identified 26 reasons for course enrollment, which were associated with learners’ age but not their gender. Similarly, Reich, Tingley, Leder-Luis, Roberts, and Stewart (2015) used Structural Topic Modeling to uncover patterns of semantic meaning in unstructured text to understand students’ enrollment motivation in an educational policy course.

Affordances and Challenges of Meso-Level Big Data

As outlined in this section, meso-level big data provide several affordances to researchers. Text data can provide insight into students’ understanding, their views on various topics, and even their emotional affect. Such data can also give information on relationships and networks within an online community. Studies that use textual analysis may help instructors to
design courses and activities to improve student engagement and to facilitate peer-to-peer
learning (e.g., Atapattu & Falkner, 2018; Gelman et al., 2018; Slater et al., 2016). However, the
applicability of various tools (e.g., Coh-Metrix and LIWC) has not been tested extensively in all
educational settings (Fesler, Dee, Baker & Evans, forthcoming). Researchers cannot ignore
contextual factors such as understanding stimuli to which students are responding. If researchers
do not pay attention to unique contextual factors, techniques for analyzing meso-level big data
might result in inaccurate inferences. Such errors are particularly dangerous when tied to
important outcomes such as student grades (e.g., Lan et al., 2015).

Macro-Level Big Data

Macro-level big data is collected over multi-year time spans, with low rates of collection
relative to the other levels. For instance, university-wide institutional data include student
demographic and admission data, course enrollment and grade records, course schedule and
course descriptions, degree and major requirement information, and campus living data. This
data is infrequently updated, at most every few weeks and often only once or twice per term. For
instance, student demographic information is usually collected only once and only updated per
student request. Nonetheless, this data can afford administrators opportunities to engage in data-
driven decision-making to improve administrative decision-making, to enhance student
experiences, and improve college or K-12 success.

In this section, we focus on three common application areas of macro-level data that have
emerged in the literature: (a) early warning systems, also known as early alert systems; (b)
course guidance and information systems; and (c) administration-facing analytics.
Early Warning Systems

Traditionally, signs that students may be at risk of dropping a course or dropping out of a program are first responded to when students reach out to an instructor or adviser. The affordance of data-driven early warning systems is that preemptive support is possible given the availability and utilization of decades of institutional big data often consisting of tens of thousands of students combined with predictive modeling. Studies assessed real-world deployments of early warning systems; however, a challenge remains of selecting the appropriate institutional response and types of information to convey to students to effectively increase their chances of success (Jayaprakash, Moody, Lauría, Regan, & Baron, 2014; Chaturapruek et al., 2018). Notably, a financial evaluation of deployed early warning systems concluded that the cost of setting up early warning systems and deploying its interventions was cost-effective (Harrison, Villano, Lynch, & Chen, 2016).

Early applications of institutional early warning systems predicted and responded to course-level failure. Marist College piloted a system that predicted students’ likelihood of failing a course based on LMS session data, academic standing, demographics, and standardized test scores (Jayaprakash, Moody, Lauría, Regan, & Baron, 2014). Candidate predictive models were trained to predict the course failure. The most accurate model was used in a real-time controlled study whereby the predictive model was used to trigger an intervention for any students who were predicted to fail a course. For students in the experiment condition, the system dispatched an email alerting them that they were at risk of failing the course and describing resources they could seek to receive support (Harrison et al., 2016; Jayaprakash, Moody, Lauría, Regan, & Baron, 2014). The motivation of the intervention was to increase the flagged students’ chances of success in the course; however, the results were mixed. A statistically significant increase in
average course grade of two to five percentage points was observed in the experiment condition over the control. However, about 7-11% more students in the experiment condition withdrew from the course compared to students in the control condition (Jayaprakash et al., 2014).

Course Guidance and Information Systems

Course information and guidance systems have emerged as a complement to early warning systems. Instead of responding to early signs of trouble in a class, they instead intend to help students select their courses. An example of a deployed system is AskOski at UC Berkeley, which uses historic enrollments and machine learning to suggest courses across campus that may be relevant to students’ interests and links them to the campus’ degree audit system to give personalized recommendations of courses that would satisfy students’ unmet graduation requirement (Pardos, Fan, & Jiang, 2019). Another deployed system, Stanford’s CARTA system, surfaces historic course grade distributions, course evaluations, and common courses taken before and after a course (Chaturapruek et al., 2018). As with the early warning intervention at Marist, unintended results were observed in CARTA’s surfacing of course grade distributions, leading to a quarter reduction in GPA among students encouraged to use the system. These findings underscore the importance of understanding how different types of information affect student choices, agency, and success.

Off-line experiments applying machine learning to predict student course grades have been increasingly commonplace in the literature (O’Connell et al., 2018; Ren, Ning, & Rangwala, 2017; Sweeney et al., 2016). As data sources and techniques for achieving high accuracy in this prediction task become established, the methodological question shifts towards using models to support students in achieving their desired performance. Nascent work (Jiang, Pardos, & Wei, 2019) has investigated if recommendations for preparation courses outside of the
BIG DATA IN EDUCATION

standard prerequisites, can be data mined from historical course enrollment and performance data. Furthermore, degree level and institution drop-out, particularly within the first semester, have been frequently studied (Aguiar, Chawla, Brockman, Ambrose, & Goodrich, 2014; Chen, Johri, Rangwala, 2018; Gray, McGuinness, Owende, & Hofmann, 2016; Zhang & Rangwala, 2018). For example, Gray and colleagues (2016) predicted which students are likely to earn a failing level GPA in the first semester based on course selection, age, and prior academic performance in secondary school. On-time versus over-time graduation expectations have also been modeled. Hutt, Gardener, Kamentz, Duckworth, and D’Mello (2018) predicted college-level outcomes from macro-level data even before a student arrives on campus. Using a national dataset, Hutt and colleagues investigated the use of binary classification models to predict whether students would graduate within 4 years using 166 features as predictor variables including student demographics, standardized test scores, academic achievement, and institution-level graduation rates.

Administration-facing Data Analytics

Méndez, Ochoa, and Chiluiza (2014) argue that "simple techniques applied to readily-available historical academic data" (p.148) can provide valuable inside perspectives of educational institutions’ programs. Institutional data sets typically involved decades of data from hundreds of thousands of students accumulating millions of course enrollments. Relatively straightforward data visualization, exploration, and modeling techniques can be quite useful with more advanced methods are not necessary to extract useful information, which less popular in the literature that often emphasizes development and application of more complex methodologies. For instance, Méndez and colleagues (2014) extracted insights from course outcome data in a computer science program utilizing included estimation of course dependence
via pairwise linear correlation of grades for the same student across pairs of courses, inference of curriculum coherence via factor analysis of student grades across multiple courses, and identification of dropout paths via sequence mining of course paths of students who dropped out. This combination of techniques provided insights that were obvious retrospectively but hidden otherwise. For example, many dropouts occurred early in student trajectories due to failing courses in basic science (rather than computer science), suggesting that focusing tutorial resources on these science courses might help increase retention rates. Work has also extended from identifying relationships between courses within an institution to identifying relationships across institutions. Pardos, Chau and Zhao (2019) used classical and neural network-based natural language techniques to analyze course catalog descriptions and enrollment records from a 2-year and a 4-year institution in order to identify similar courses between them. Their investigation attempted to increasing the quantity and quality of course pairs, or articulations, where transfer students would be guaranteed course credit. They found that while the course descriptions provided the most powerful signal of similarity, patterns of enrollment around the course (i.e., who took the course and which other courses they took) was nearly as valuable as the descriptions in identifying similarities across institutions.

Koester, Fogel, Murdock, Grom, and McKay (2017) aimed for the "transcript of the future" by using macro-level data to generate a richer description of a student's academic experience, as an alternative to traditional GPA and course grade information. They modeled student-grade pairs as linear combinations of student and course fixed-effects and explored estimated student and course effects identifying various aggregated patterns in enrollment and outcome data. This illustrates that even relatively limited institutional data (records of course outcomes for student-course pairs) can potentially provide a wealth of information about
students, courses, and majors. Similarly, Mahzoon, Maher, Eltayeby, Dou, and Grace (2018) focused on information contained in sequences of student course outcomes to build sequential descriptors of student academic performance across terms from college entrance to graduation, providing a basis for visualizations and automatically generated narratives about student trajectories. This approach derived sequential signatures for each student to predict on-time graduation concluding that temporal information as a student progresses through college is important in predicting student outcomes.

In addition, course information captured in course syllabi and curricula can be mined for potentially insightful information. For example, Sekiya, Matsuka, and Yamaguchi (2015) analyzed computer science degree curricula across 10 US universities focusing on online syllabi (available from course Web pages) for each computer science course. With topic modeling, Sekiya and colleagues automatically extracted clusters of words in the form of topics or “knowledge areas,” where each university’s syllabus could be characterized as a distribution over knowledge areas. This approach provides a systematic framework for quantitative comparative analysis and visualization of syllabi across universities leading to insights about emphases in education across different universities—the use of automated text analysis techniques here is essential given the volume and complexity of data involved. Davis, Seaton, Hauff, and Houben (2018) analyzed learning design components across 177 MOOCs consisting of over 78,000 learning components (e.g., assets with which learners interact including videos, problems, html pages). Sequences of activities were abstracted via “lecture→discussion→assessment” by clustering transition probabilities and sequence mining to generate insights about common sequential learning patterns across multiple courses. While this
BIG DATA IN EDUCATION

analysis is relatively new, it has potential to provide novel insights, for example, by linking thematic aspects of course design with measurements of student activity and performance.

Affordances and Challenges of Macro-Level Big Data

This section highlights the promise of bringing more advanced statistical techniques to bear on extant data sets. Universities routinely collect reams of course taking and student performance data, but until recently these data were rarely used for institutional reforms or to improve student decision making. By analyzing these data, and making data and analyses available to students, schools can meaningfully improve outcomes. Importantly, public access to these data may also improve equity. Whereas course-taking information was historically available only through social networks, such as fraternities and sororities, more open access may have a democratizing effect by giving all students equal access.

However, benefits of these data sources may be limited due in several ways. First, schools’ contexts are unique, and applying the same analysis across schools may yield unreliable findings. For example, curricular requirements across majors or schools can affect student course taking, and knowledge of these requirements can affect inferences from analyses. Second, if students have goals not captured by institutional data, such as employment outcomes, the available data may provide limited guidance. Joining multiple sources of data, such as employment records or students’ social activities on- and off-campus, could improve researchers’ ability to make inferences but also raise concerns about student privacy. Finally, as with all types of big data, it is uncertain how students may use the information from these analyses to change their behavior. As Chaturapruek and colleagues (2018) found, informational interventions may have unintended consequences on student behavior and student outcomes.
Though data mining offers numerous potential benefits for educational research, there are also many challenges to be overcome to achieve those benefits. We summarize those below in three main areas: accessing, analyzing, and using big data.

Accessing Big Data

Educational data exists in a wide array of formats across an even wider variety of platforms. In almost all cases, these platforms were developed for other purposes, such as instruction or educational administration, rather than for research. Many commercial platform providers, such as educational software companies, have no interest in making their data available publicly. Other companies make their data available in a limited way, but have not invested resources to facilitate access to data for research. Only a small number of platforms, such as Cognitive Tutor and ASSISTments, have made high-quality data broadly available.

By contrast, Google makes available the Application Programming Interface (API) of its widely used Google Docs program so that third party companies can create extensions and other products that use or integrate with the software. It also allows users to view the history of their writing process in individual documents they have written or collaborated on down to 4-second increments; these documents can also be shared with others who can also view those histories. The combination of open API and document history should, in theory, allow users to analyze meta-data from large sets of writing data, such as, for example, all documents written by students and teachers in a school district under a Google Docs site domain. In principle, though, writing the software to extract and analyze that data is a hugely complicated task. Some university and commercial groups have taken small steps in this direction, including the Hana Ohana research lab at UC Irvine, which has developed tools for analyzing collaboration history on individual
BIG DATA IN EDUCATION

Google Docs (Wang, Olson, Zhang, Nguyen, & Olson, 2015), and the private company Hapara (2019), which mines school district data for patterns related to time and amount of student writing, but these are very partial solutions to what largely remains an out-of-reach treasure of student writing data. In addition, even platforms that make their data available may require programming skills to extract it. Though many educational researchers are familiar with statistical software such as R or Stata, far fewer know programming languages superior for data extraction such as Python.

Finally, and most importantly, the availability of data is complicated by privacy issues. Parents, educators, and others are rightly concerned about companies’ ability to mine large amounts of sensitive student data and act in ways that are not necessarily focused on bettering individual students’ futures. Fears have been raised that student data that is inappropriately shared or sold could be used to stereotype or profile children, contribute to tailored marketing campaigns, or lead to identity theft (Strauss, 2019). Data privacy issues are exacerbated in K-12 settings where students are children and participation in educational activities is mandatory.

Though the risks of sharing student data generate the most publicity, there are also risks to not sharing student data. Colorado has the strictest student data sharing policies in the US, according to the Parent Coalition for Student Privacy (2019). Yet data sharing is so strict that, according to the “Right to Know” coalition (Right to Know, 2019; see also Meltzer, 2019; Schimke, 2019), the public is robbed of the information necessary to evaluate the performance of schools and educational programs in the state and their impact on diverse students.

Finding the right balance between individual privacy and the public interest is very challenging. That is in part because the large amount of data available in big data sets makes it very difficult to prevent the “re-identification” of de-identified data, even if all direct identifiers
are removed. It is thus impossible to combine both maximal privacy with maximal utility.

Instead, educational institutions and researchers face a choice between maximizing privacy and limiting the utility of the dataset or maximizing utility but leaving the data subject to possible “re-identification” with sufficient effort (Nelson, 2015).

The challenges of sharing meso-level data are even greater, since there are an unlimited number of ways that students can reveal their identity in their writing. Addressing these challenges requires different kinds of strategies for different audiences and purposes. The U.S. Family Education and Privacy Act (FERPA) allows schools and institutions to share data with organizations conducting studies for the purposes of improving instruction. Organizations such as the Inter-university Consortium for Political and Social Research (ICPSR) host data sets with a wide range of restrictions. Data sets that favor utility (but sacrifice maximal privacy) can be made available to other research teams that are governed by IRB protocols, while data sets that limit utility but maximize privacy can be shared with the general public. Of course, even groups that are inclined to make data available for research may be hesitant to do so due to the extra steps and expenses required to assure an appropriate level of de-identification.

Analyzing Big Data

As with accessing big data, analyzing big data also poses challenges regarding researchers’ skills. As noted above, few educational researchers know key programming languages used for data science such as Python. Educational research graduate programs seldomly offer instruction in data clustering, modeling, and prediction techniques used to analyze big data.

Even for researchers with such skills, error rates and noise pose additional challenges. For example, although predictive models can provide systematic improvements in prediction
quality on average over base rates, high error rates may indicate occurrence of significant exogenous factors at play not captured even in large amounts of data. When such predictive results facilitate the decision making of instructors or institutional policymakers, these errors may harm students’ short-term learning or long-term success. In addition, large data sets with large numbers of predictor variables may result in quite complex and difficult to interpret models that may not necessarily help stakeholders more than simpler models. This suggests that predicting student outcomes at a macro “long time-scale” level is inherently difficult and relationships between predictors and “downstream outcomes” can be complex with many different factors affecting student outcomes, which may potentially not be measured.

One way to mitigate these changes is to combine macro-level data with micro- or meso-level data. For instance, Aguiar and colleagues (2014) exemplified how non-macro data can be useful in predicting student outcomes. The authors investigated different data sources for predicting student dropout of engineering at Notre Dame after their first terms, treated as a binary classification problem. In terms of institutional (macro) data sources, the authors used predictor variables based on academic performance (i.e., SAT scores, first term GPA) and demographics (i.e., gender, income group). Micro-level predictor variables included online student engagement during students’ first college term. The results were strikingly clear: Online engagement variables had significantly more predictive power than the academic performance or demographic variables across a variety of classification models. Similarly, Miller, Soh, Samal, Kupzyk, and Nugent (2015) found that predictive models constructed to predict learning outcomes for students taking undergraduate computer science courses could benefit significantly from including online student interaction data. These studies indicated that the addition of
predictors based on non-institutional data (such as online engagement data) can provide significant additional predictive power beyond institutional data alone.

Using Big Data

Finally, even if we successfully access and analyze big data, additional issues arise related to how data is used. As educational researchers increasingly turn to data mining, they will have to confront the tension between explanation and prediction. Yarkoni and Westfall (2017) discuss this tension in detail in relationship to the field of psychology. They argue that psychology’s focus on explaining the causes of behavior has led the field to be populated by research programs that provide intricate theories but have little ability to accurately predict future behaviors. They further suggest that increased focus on prediction using data mining and machine learning techniques can ultimately lead to a greater understanding of behavior.

We also believe this is true in educational research, as seen in the example of Connor’s (2019) research on her Assessment2Instruction (A2i) professional support system for reading instruction. Literacy research has been marked by so-called “reading wars” between advocates of code-focused (e.g., phonics) versus meaning-focused (e.g., comprehension) instruction. Though a consensus has emerged over time on the critical value of the former, how much it should be supplemented by the latter is a continued debate. Connor’s team tackled this issue in a highly creative way, adding a less-talked about but also important question: Are elementary students best served by individualized (child-managed) or whole class (teacher-managed) instruction?

The research team collected vast amounts of data on how much time children spent in (a) code- versus meaning-focused and (b) child- versus teacher-managed reading instruction, as well as (c) children’s progression in reading proficiency throughout the year. Data mining techniques were used to develop and refine models indicating what combinations of instruction work best
BIG DATA IN EDUCATION

for children at different levels of proficiency and points in the school year (Connor, 2019). These models were developed into a software recommender system (A2i) that would assist teachers with grouping students to receive the types of instruction best suited to students’ needs.

Randomized control trials were used to compare reading achievement in classrooms using A2i to classrooms teaching reading without it, finding strong positive effects for the former. This project thus not only built a valuable predictive tool that can guide teachers and improve literacy outcomes, but also added explanatory value as to the differential contributions of code- and meaning-focused and child- and teacher-managed instruction.

Finally, in using big data, it is critically important to examine and address potential issues of bias, particularly, when algorithms associated with big data lead to predictions and/or policy. For example, much attention focused on the potential for racial bias in predictive algorithms used in policing (e.g., Brantingham, Valasik, & Mohler, 2018). The European Union Agency for Fundamental Rights (2018) provides a well-justified set of recommendations for how to minimize bias in big-data derived algorithms. These include ensuring maximum transparency in the development of algorithms, conducting fundamental rights impact assessments to identify potential biases and abuses in the application of and output from algorithms, checking the quality of data collected and used, and ensuring that the development and operation of the algorithm can be meaningfully explained.

Recommendations

Meeting these challenges will require rethinking both how we develop educational researchers and the kinds of research practices our research community favors. Curricula in graduate schools of education overwhelmingly favor research methods that fall within one of two major paradigms: quantitative measurement and hypothesis testing or interpretive qualitative
research. Analyzing big data draws on an alternate research paradigm from computational social sciences. Only a handful of doctoral programs in education offer the kinds of research training necessary to develop the educational data sciences of the future, and even fewer offer instruction related to the ethical, moral, and privacy dimensions of working with big data. Partnering with other programs across campus, from computer science, data science, or other fields, is a possibility, but, in most universities, there is too little interdisciplinary training across these fields and education. In addition, both faculty and graduate students in computer and data science are incentivized to focus their research on original contributions to important theoretical challenges and techniques in those fields, rather than in research on applications of data science in other areas, such as education.

To address this challenge, we need to create broader pipelines of talented data scientists focused on educational research. This can be through curricular reform within education graduate programs and/or improved interdisciplinary training across education and computer/data science fields. Federally funded doctoral and postdoctoral training programs in educational sciences would be one very valuable step in this direction.

Mining big data in education challenges not only how we prepare educational researchers, but also what kinds of research practices we engage in. Traditional models of educational research privilege the sole author who gets extra rewards in the hiring, tenure, and promotion process, discourage collaboration between junior and senior scholars because such collaboration taints junior scholars as supposedly lacking independence, and favors hoarding of data so that investigators reap all the rewards from it without diminishing its value through sharing. In contrast, research projects that involve data mining typically privilege team science with junior and senior scholars and open science so that large data sets can be combined and re-
BIG DATA IN EDUCATION

used for new analyses and replication. Of course there are many reasons to support open science even within the traditional quantitative and qualitative educational research paradigms, but the value of adopting open science practices is even more pressing as we transition to conducting more educational data science.

The Sloan Equity and Inclusion in STEM Introductory Courses (SEISMIC) launched by the University of Michigan exemplifies the value of open science for new kinds of educational research. Faculty at ten large research universities connect through parallel and combined data analyses and continuous exchange of speakers and graduate student researchers to explore and improve instructional practices and outcomes in foundational STEM courses reaching hundreds of thousands of students. Open sharing of data and team science will be hallmarks of this important research initiative. Perhaps not surprisingly, the project was initiated by a Professor of Physics and Astronomy, a discipline where large-scale open team science is much more common than in education.

Conclusion

The availability of big data offers exciting new threads of research and the opportunity to add additional perspective to existing threads in education. All types of big data in education offer affordances and challenges. The sheer amount of micro-level data make big data methods a powerful tool for analyzing learner processes, but that power can lead researchers to ignore broader and potentially more important patterns that cannot be measured at the micro-level. Meso-level data give a deep window into cognitive processes by examining individuals’ writing but is prone to many of the broader challenges of using automated tools for writing measurement (e.g., Raczynski & Cohen, 2018). Macro-level data can be valuable for taking the broadest look at student persistence and achievement, but the smaller size and coarse measurements of macro-
level data sets may make it difficult to identify finer-grained mechanisms at play (e.g., Scott-Clayton, 2015).

The limitations of each of these types of big data can be minimized, and the benefits amplified, if future research triangulated either with the remaining types of big data or with more traditional forms of quantitative or qualitative analyses. Through recording, accessing, analyzing, and utilizing multiple types of data, we can better understand and respond to individual learner behavior as it manifests in the increasingly pervasive digital realm. Furthermore, the ubiquity of big data suggests an increased emphasis in preparing students in educational graduate program to utilize data science methods, as well as a committed push towards open science and research structures that favor collaborative teams to improve our field’s capacity for mining big data for educational research. Given the potential benefits of mining big data in education, it is worth our effort to begin addressing these challenges.

References

https://doi.org/10.1145/2883851.2883939

BIG DATA IN EDUCATION

BIG DATA IN EDUCATION

BIG DATA IN EDUCATION

Honolulu, HI.

Affective States and State Tests: Investigating How Affect and Engagement during the
School Year Predict End-of-Year Learning Outcomes. Journal of Learning Analytics,
J(1), 107–128. https://doi.org/10.18608/jla.2014.11.6

with a Personalized Next-Step Recommendation Framework. In C. Thille & J. Reich
(Eds.) Proceedings of the 4th Conference on Learning @ Scale (L@S). ACM. Pages 23-
32. https://doi.org/10.1145/3051457.3051471

utility and scrutability of neural networks for personalized course guidance. User
Modeling and User-Adapted Interaction, 29(2), 487–525. https://doi.org/10.1007/s11257-
019-09218-7

Machine Translation. In J. C. Mitchell & K. Porayska-Pomsta (Eds.) Proceedings of the
6th ACM Conference on Learning @ Scale (L@S). Chicago, IL. ACM.
https://doi.org/10.1145/3330430.3333622

Parent Coalition for Student Privacy (2019). The state student privacy report card: Grading the
states on protecting student data privacy. Retrieved from
https://www.studentprivacymatters.org/

https://doi.org/10.1145/2858036.2858361

https://doi.org/10.1109/TLT.2014.2307305

https://doi.org/10.1007/s40593-013-0010-8