
 

 

 Predicting Transfer in a Game-Based   
 Adaptive Instructional System 

    
ABSTRACT 
Transfer, the application of knowledge to new problem-solving sit-
uations, and preparation for future learning are often considered 
among the primary goals of education, but it is difficult to achieve. 
This paper presents an initial exploration of young children’s abil-
ity to transfer the specific knowledge and skills that they have 
learned from a game-based adaptive instructional system to the 
types of math problems they typically see in school. We describe a 
regression tree model predicting young children’s far transfer per-
formance of specific knowledge and skills following their 
performance in a game-based adaptive instructional system called 
My Math Academy. Findings suggest that My Math Academy game-
play empirically supports positive performance on a task that 
involves elements of both far transfer of learning and preparation 
for future learning.  
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1. INTRODUCTION 
A key goal of an adaptive instructional system (AIS) – and of edu-
cation in general – is to promote learning that is retained over time,  
can transfer to new situations, and prepares students to learn in the 
future [10, 42] . Transfer of learning and preparation for future 
learning, however, are often difficult to achieve [9, 11, 24]. AISs 
can consider what learners know, do not know, and are ready to 
learn to tailor instruction, feedback, and scaffolding to ensure mas-
tery of specific learning objectives [39]. However, only a small 
proportion of studies attempt to directly measure whether 
knowledge learned from AISs will transfer or prepare students for 
future learning, particularly in game-based systems [1, 29]. Game-
based AISs can leverage the many positive benefits of game-based 
learning [12, 13], but they also pose an additional challenge for 
learners to transfer the content and strategies outside of the game 
environment [20, 25]. How do we know whether learners can apply 
what they have learned to new learning or problem situations be-
yond the AISs?  

This paper presents an initial exploration of children’s ability to 
transfer the specific mathematics skills that they have learned from 
a game-based AIS to the type of problems they typically see in 
school. In this pilot, children were asked to use a game-based AIS 
called My Math Academy (MMA) as a supplement to their usual 
mathematics instruction. Upon their demonstration of mastery of 
each granular learning objective (i.e., skill, knowledge, fact, or abil-
ity) within MMA, children were asked to complete online 
worksheets consisting of exercises or assessment items designed to 
measure transfer of that learning objective. Previous research has 
demonstrated the effectiveness of MMA in accelerating mathemat-
ics learning outcomes in young children [4, 41]. The primary goal 
of the current pilot was to evaluate the degree to which MMA can 
provide the potential for the subsequent transfer of learning and 
preparation for future learning outside the game contexts. Insights 
from this pilot can be used to inform design improvements of MMA 
games. The data collected from this pilot enabled us to explore the 
relationship between gameplay and transfer performance. Here we 
describe a machine learning model predicting young children’s per-
formance on a set of tasks involving both transfer and a lesser 
degree of preparation for future learning, from performance of spe-
cific learning objectives from gameplay behaviors in MMA. 

2. LITERATURE REVIEW 
Transfer of learning is the application of previously acquired 
knowledge and skills in new problem-solving situations [5, 9, 31]. 
Achieving transfer has long been one of the biggest challenges of 
traditional education [42], and it is a particularly important chal-
lenge for game-based learning systems given the less-similar 
representations and contexts often used in game-based learning. 
Many have also argued that transfer itself is not as important for 
long-term student outcomes as preparation for future learning 
(PFL), where a student is better prepared to learn new content [9]. 
To achieve transfer and PFL, the similarities and analogies between 
current learning content and future actual context and processes of 
application often play a critical role. Learners can memorize facts 
and procedures, but often they do not know when to appropriately 
apply those facts and procedures. To see the applicability and rele-
vance of learned facts and procedures in new contexts, learners 
must be able to actively recognize the meaningful problem struc-
tures underlying the source and transfer tasks amidst irrelevant 
details [8, 22]. In other words, transfer is a pattern recognition prob-
lem; learners must be able to see what matters and map it between 
learning and usage [16, 23]. The challenge lies in making sure that 
students grasp the underlying structure of the learned problems and 
content, and are able to do so fluently enough to apply what they 
have learned to novel problems. 

Game-based learning environments can provide the context for us 
to study game mechanics and scaffolds that promote transfer, and 
the player performance and behaviors within the game environment 
that promote transfer [38]. This pilot focuses on the latter. To 
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evaluate transfer, we also need to have assessments that provide 
ecologically valid measures of transfer. This pilot incorporates the 
use of MMA, a game-based AIS, into classrooms and uses work-
sheets of problems typically found in teacher resources and 
standardized assessments to establish an ecologically valid class-
room measure of transfer. The goals of the pilot were formative: (1) 
to measure the extent to which students could demonstrate transfer 
outside the game context to inform game design improvements, (2) 
to test and iterate transfer measures for future studies. In this paper, 
we explored the degree to which students’ usage and performance 
within MMA could be used to predict their ability to succeed on a 
task involving transfer as well as a lesser degree of preparation for 
future learning.  

Research has demonstrated that transfer can be defined along sev-
eral contextual and content dimensions [5, 11]. For the purposes of 
this paper, the degree of transfer is based on task similarity, such 
that “near” and “far” transfer refer to the degree of similarity be-
tween the training and transfer situations (more on this below). 
Much of the evidence for transfer from game-based learning con-
texts has come from near-transfer items or responses taken directly 
from gameplay with a high degree of alignment with the game itself 
[33]. To evaluate how well students can transfer beyond the origi-
nal context, we opted to predict performance only on far transfer 
items, given after the student had also had the opportunity to learn 
from near transfer items. Instances of far transfer, while rare, have 
been documented and prior research suggested that it may even be 
predictable once the relevant dimensions are specified [5]. Some 
prior work has investigated transfer through predictive modeling of 
academic skills learned from AISs (e.g., [3, 36]). There have been 
reports of transfer to executive functioning skills from game-based 
learning environments [32], but much remains unknown about 
transfer from games to academic learning outcomes.  

Well-designed game-based learning systems leverage play to pre-
sent authentic learning contexts for learners and provide formative 
assessment to foster learning and sustain engagement [15], trans-
lating game-based interactions to inferences about learning 
performance (e.g., [27]). In this data-rich context, the field of edu-
cational data mining (EDM) provides an ideal range of methods in 
which to make inferences about learning [29]. Specifically, EDM-
based prediction using event-stream game data has offered insights 
into learning constructs such as strategic problem-solving (e.g., 
[43]), cognitive disengagement (e.g., [21]), and learning outcomes 
(e.g., [35]). Similarly, these EDM prediction and classification 
methods, already used to explore transfer in other contexts (e.g., 
[3]) are leveraged in our study for modeling transfer in a game-
based learning environment. 

3. RESEARCH AND DATA COLLECTION 
3.1 My Math Academy (MMA) 
My Math Academy is a game-based AIS designed to help young 
children build a strong foundation in number sense and operations. 
It includes 300 game-based activities, covering number sense and 
operations concepts and skills for pre-kindergarten through second 
grade. Topics range from counting to 10 to adding and subtracting 
three-digit numbers using the standard algorithm. The personalized 
mastery-learning system underlying MMA uses initial placement 
assessments (based on a simplified ECD design; e.g., [26]) to meas-
ure each child’s prior knowledge and determine where they are 
placed within the system based on what they know and are ready to 
learn next [14]. 

Children play games to learn in MMA. Using an evidence-based 
design approach (e.g., [17]) to guide the work of generating in-
game evidence, game-based assessment mechanics within MMA 
are designed to generate data on learning performance. Each game 
is associated with a learning objective, learning tasks, and evidence 
of learning (e.g., [30]). Learning objectives (LOs) are granular. Ex-
amples include count sequence 1-5, 1:1 correspondence and 
cardinality 6-10, and count out 11-15 objects from a group of up to 
20 objectives. A knowledge map organizes the LOs and their pre-
requisite relationships [14].  

Evidence of learning on each granular LO is collected as the student 
plays. As they progress in MMA, the adaptive system uses their per-
formance to recommend learning for individualized difficulty, at 
the LO level (based on the knowledge map), and within the LO 
level (by calibrating difficulty of new activities based on prior ac-
tivity performance). Each group of game-based activities that 
correspond to an LO is referred to here as an “LO unit”. Each LO 
unit includes up to six learning activities at varying difficulty lev-
els, including an in-game mastery assessment called the “boss” 
level. Students master the boss levels to demonstrate their skills and 
understanding for each LO, indicating that they are ready to move 
on to the next LO unit. Within individual activities, performance 
data are used to provide scaffolding, adjust difficulty, and offer 
formative feedback. Across the system, this adaptivity gives learn-
ers a customized pathway between skills based on prior 
performance. A student may pass, stay, or fail back within an LO 
unit (go to an easier activity level), and the various adaptivity and 
scaffolding mechanisms enable each student to have a highly per-
sonalized experience, tailored to his or her “ready to learn” math 
level and learning pace.  

Theoretical foundations of learning sciences have been applied to 
inform MMA’s content, pedagogy, and design for learning and en-
gagement (e.g., [7, 30]). Formative assessment mechanics require 
learners to actively retrieve new and previously learned information 
[34]. Children explore and practice with different examples of the 
same concept to ensure that they fully grasp the underlying concept 
across different examples [23]. In addition, MMA engages learners 
in real-world math with stories that contextualize math concepts 
within meaningful problem-solving situations [40]. For example, 
Figure 1 shows a game where the Shapeys (game characters) need 
help with counting swim rings.  

  
Figure 1. Help the Lifeguard Shapey find the total number of 
swim rings needed by counting on from a number within 1-10 

The architecture for event-stream data collection within MMA was 
based on data frameworks that can provide syntheses of assessment 



 

 

mechanics and resultant evidence while capturing a context-rich 
data stream of player interactions (e.g., [18, 37]). This structured 
data stream enables EDM investigations into emergent patterns of 
learner behaviors and outcomes, leveraging in-game logfile data 
and comprehensive feature engineering for exploration of play and 
learning [28]. 

3.2 Data Collection 
In Spring 2021 during the COVID-19 pandemic, five classrooms of 
kindergarteners and first graders (N = 102 students) from two 
school districts virtually participated in this pilot. They used MMA 
as a supplement to their regular math instruction for an average to-
tal of 10.5 hours over 10-12 weeks. After each student 
demonstrated mastery on a LO in MMA, they received assignments 
of transfer items that addressed that LO. Transfer items were cre-
ated or found in teacher workbooks or standardized assessments 
that addressed the granular LOs covered by MMA. Transfer was 
intentionally explored in this granular fashion to inform specific 
improvements in the design of MMA games. 
Transfer items shared the same underlying problem structure as the 
source problems posed in MMA. They were classified as “near” or 
“far” transfer based on the extent to which they shared task features 
with the source problems. Task features included problem format, 
procedures, and cover story. Example transfer items are shown in 
Figure 2. All transfer items required a change in context from MMA 
games to worksheets in ClassDojo or Seesaw, interactive learning 
platforms that classrooms were already using for assigning and col-
lecting homework. Each item was an editable worksheet delivered 
with replayable voiceover instruction, to ensure that children’s abil-
ity to read the instruction was not a deterrent to determining their 
math knowledge. Students could insert text and draw directly on 
the worksheet and submit audio or video recordings.  

 
Figure 2. Example near transfer item (left) and far transfer 
item (right) for the Counting On 1-10 learning objective. 

When a student “masters” an LO (i.e., passes the boss level) within 
MMA, near transfer items for that LO were assigned the next day.  
If they successfully demonstrated near transfer on at least one item, 
they received far transfer items for that LO the following day. As-
signments were done manually by the research team. There was 
often a temporal delay of 1 to 5 days from when students demon-
strated mastery within the games and when they responded to the 
given transfer items. Corrective feedback was provided for every 
transfer item, to support learning. Since students could have re-
ceived feedback on near transfer items before receiving far transfer 
items, the far transfer measure captures some degree of preparation 
for future learning as well. However, since the far transfer items 
still involved different transfer than the near transfer items, the 
measure can be seen as primarily capturing far transfer. 

Given the adaptive nature of the system and that students used 
MMA at home at varying time intervals, students varied in the 
amount of usage and mastery rate. Therefore, the number of 

transfer items seen by students varied. Students who completed 
skills at a faster rate received more total transfer items. Students 
were asked to complete the assignments independently without 
help, and students were limited to 1-5 assignments per student per 
week to allow room for other schoolwork. Additionally, due to the 
formative nature of the pilot, when certain transfer items did not 
function well (e.g., when the instructions were not clear to stu-
dents), they were modified, or alternative transfer items were 
assigned in their place. Thus, while approximately 90% of the items 
remained the same during the pilot, some items were iteratively im-
proved based on student data throughout the course of the pilot. 

4. DATA SOURCES AND FEATURE     
ENGINEERING 

Transfer item data was utilized to provide a salient outcome varia-
ble for predictive analysis. Since the study aimed to understand the 
breadth of transfer across early mathematics skills, we focused on 
the number of mathematics LOs with high-level transfer evidence 
(based on the passing of far transfer items used in the study). Thus 
the final outcome variable, named num-
ber_of_LOs_with_far_transfer in analysis, represented the total 
number of LOs with successful far transfer per student.  

MMA event-stream data collection was grounded in recent educa-
tional game-based data frameworks (e.g., [18]), with feature 
engineering focusing on in-game progression and performance 
[28]. Progression features included the quantity of activities started 
per student in the entirety of their system use during the study, and 
well as their total activities canceled, and cancellation rate. Perfor-
mance features included scores from an in-game pretesting system, 
as well as performance on activities and final LO assessments in 
the game. To measure a student’s degree of success rather than de-
gree of completion (captured partially also by activities_started), 
in-game completion and learning measures were engineered as ra-
tios and percents, representing performance per student at the 
activity level and at the LO level. Table 1 below details the features 
included in the main prediction analysis. 

Table 1. Event-stream data features for input into prediction 
model 

Feature Name Description 
activities_started Number of activities started 

activities_canceled Number of activities canceled* 

activity_cancella-
tion_rate 

Number of activities canceled / 
Number of activities started  

pretests_passed Total pretest score (prior 
knowledge proxy) 

assess-
ment_level_pass_rate 

Pass rate of all assessment levels in 
the MMA system 

dataLO_assess_pass_rate Pass rate of fact-memorization LO 
assessment levels in the system**  

masteryrate_finalboss-
pass_ 
to_activitiescomplete 

Mastery rate: final boss levels 
passed / activities completed to get 
there (a learning efficiency ratio) 

LO_completion_rate Number of LO units passed / num-
ber of LO units started  

*Canceling: a student leaves current activity, and returns to activity selection menu. 
**”Data” LOs, or learning objectives focused on fact memorization (e.g., basic number 
recognition), were differentiated here because they have a timed “fluency” mechanic 
that is unique within the system (and thus assessed slightly differently); also, these 
LOs can be viewed as foundational to most of the early math skills in MMA. 
 



 

 

5. METHODS: PREDICTING FAR 
TRANSFER 

To effectively explore the relationship between MMA and transfer, 
our goal was to predict far transfer based on student interactions 
with the MMA personalized learning system. Thus, using the full 
feature list, a model was built using in-game features as input vari-
ables, and the number of far transfer LOs as the outcome variable. 
To control for formative evolution of items, we used a stable, uni-
versal subset of far transfer items to generate the final outcome 
variable. Interestingly, students had a mean of 8.4 LOs passed with 
far transfer (with a mean of 9.4 LO far transfer attempts), and an 
average of 1.25 hours of play per each successful far transfer LO. 
Before prediction analysis, the data set was filtered to include only 
students who completed at least one far transfer item (final n = 97) 
to ensure that the outcome variable only represented those with an 
opportunity for far transfer. 

A set of algorithms appropriate for regression on a small data set 
were selected, including RepTREE, linear regression, Random For-
est Regression, and M5'. M5' is an algorithm that fits a decision tree 
with linear regression equations at the leaves; it is particularly ef-
fective for regression tasks because it can fit piecewise regressions 
where the relationships between variables are locally regular but 
have discontinuities across which the relationships change. Built 
using the RWeka [19] implementations of these algorithms, models 
were evaluated under Leave One Out Cross Validation (LOOCV) 
at the student level (the overall level of analysis). A single final 
model was chosen based on the cross-validated Spearman’s rank 
correlation, since the dependent variable was not normally distrib-
uted (confirmed by a Shapiro-Wilk test; W= .68604, p < .001).  

6. RESULTS 
Ultimately, M5’ produced the best-performing model, yielding a 
cross-validated correlation of .539, comparable to similar transfer 
and game-based learning models (e.g., [2, 3, 28]). Interestingly, the 
model splits along assessment level pass rate, implying that stu-
dents who had higher in-game performance had a different model 
of far transfer than those who did not. Each linear model, with de-
tailed features, follows below: 

assessment_level_pass_rate <= 0.344 : LM1 (39/28.504%) 
assessment_level_pass_rate > 0.344 : LM2 (58/93.683%) 
 
LM num: 1 
number_of_LOs_with_far_transfer =  
0.0215* activities_canceled - 0.0267* pretests_passed  
+ 5.1746* dataLO_assess_pass_rate  
- 4.0665* masteryrate_finalbosspass_to_activitiescomplete  
+ 15.0016* assessment_level_pass_rate  
+ 9.1112* activity_cancellation_rate - 5.5577 
 
LM num: 2 
number_of_LOs_with_far_transfer =  
0.0752* activities_started - 0.1011* activities_canceled  
- 0.0198* pretests_passed + 12.3236* dataLO_assess_pass_rate 
- 3.0081* masteryrate_finalbosspass_to_activitiescomplete  
+ 16.729* activity_cancellation_rate - 6.8657 
 
In both branches, assessment level performance boosted transfer 
(with a direct relationship to data LO assessment pass rates in both 
LMs, and higher general assessment level pass rates within LM1). 
In addition, the more practice activities students completed in order 
to reach a unit’s final assessment level, the better their far transfer. 
This is represented in the mastery rate feature, which divides final 

boss assessments passed by the number of activities completed to 
get there – a kind of efficiency ratio, in which a higher value implies 
a shorter trajectory between unit start and final assessment pass. Its 
negative coefficient in both LMs suggests that the most direct path 
to the final assessment wasn’t the best for transfer; in fact, it appears 
to better foster transfer when students have more practice along the 
way, consistent with cognition and memory research supporting 
benefits of retrieval practice and repetition over time [34]. Pretests 
passed, a proxy for prior knowledge, also had a negative coefficient 
in both equations (albeit very small). This implies that lower prior 
knowledge contributes to a greater number of LOs with far transfer. 
One possible explanation is a ceiling effect, i.e., that some students 
with higher prior knowledge coming into the system – thus initially 
placed further along in the system – may have simply run out of 
new LOs to learn about (MMA covers up to 2nd grade math). Indeed, 
two students did reach the end of all material in the app (and other 
students came close). Lastly, cancellation rate of activities is asso-
ciated with more successful transfer, suggesting that the decision to 
cancel activities somehow involves engaging with the mathematics 
material – possibly when evaluating the underlying math skill 
enough to decide whether to continue with an activity.  

Thus, the model’s far transfer outcome was boosted with a lot of 
preceding practice, slightly lower prior knowledge, and higher can-
cellation rate. One key difference between the branches (split based 
on assessment pass rate) was that the group that performed more 
poorly on assessments (LM1) showed a positive relationship be-
tween the number of canceled activities and transfer outcomes, 
while the higher performing group (LM2) yielded a negative coef-
ficient for that feature. Since players in the LM1 group had lower 
prior knowledge (with average pretest scores 31% lower than LM2 
students) and potentially lower confidence in math skills, one pos-
sibility is that cancellations may have represented a conscious, 
engaged selection of activities with careful thought about what each 
student did and didn’t feel ready for. In the LM2 group, with higher 
prior knowledge and higher assessment performance, it’s possible 
that cancellations represented more of a spontaneous decision 
(since they were more likely to have the skills needed to confidently 
tackle each unit), with less thoughtful evaluation of underlying 
math content. This suggests that different metacognitive processes 
may be involved with cancellations in different contexts, and that 
cancellations can occur for multiple reasons. Further research is 
needed to understand these associations more deeply, but it’s an 
interesting finding that activity cancellations – which one might au-
tomatically assume have a negative impact – have varied 
relationships with performance and transfer.  

7. DISCUSSION AND LIMITATIONS 
As an initial exploration of mathematics transfer based on MMA, 
this study found consistent relationships between system play and 
performance on the study’s transfer items, succeeding in fitting a 
model that could predict a measure involving far transfer and a 
lesser degree of preparation for future learning. These pilot findings 
show promise for future research in establishing transfer based on 
MMA play, and can be used to refine both the system and the trans-
fer items themselves. In the quest to have positive impact on 
students’ early math skills through engaged, playful learning, ad-
dressing transfer to more formal, school-based representations is 
essential. Unearthing findings that suggest MMA helps kids de-
velop knowledge that transfers to school learning is a positive step 
in the right direction – fueling more work in this area to further 
improve student experience and results from MMA.  

As a pilot study, there were many formative elements and limita-
tions to consider, which we now have the opportunity to refine in 



 

 

future research. A main challenge was that we wanted to measure 
transfer, but there wasn’t a previously established set of items that 
built a specific bridge from MMA play to far transfer in early math-
ematics. Indeed, part of our goal was to create and refine items for 
greatest relevance and usability in a formal learning environment 
(in the vein of ecological validity). In cases when the transfer items 
did not function well (e.g., when instructions were not clear), they 
were modified for higher clarity. In cases when some near transfer 
items proved to be too difficult, alternative items were assigned. As 
a result, while most transfer items remained the same during the 
pilot, some items were iteratively improved based on student data 
throughout the course of the study. To control for this in the main 
analysis, we used a stable, universal subset of far transfer items to 
generate our final outcome variable. Another limitation to our study 
was that the learning support (feedback) provided for the near trans-
fer items, while increasing the number of students who could be 
investigated in terms of far transfer (and supporting overall student 
learning), introduced a degree of preparation for future learning 
into our far transfer measure, making our findings somewhat less 
interpretable. However, since far transfer and preparation for future 
learning are related, and both important, this limitation was – in our 
view – less important than ensuring that a maximal number of stu-
dents learned to transfer their knowledge. Overall, in future studies, 
this set of pilot items can serve as a foundation for ongoing refine-
ment of a broad base of relevant transfer assessment items. 

Posing additional challenges, the study took place in the middle of 
brick-and-mortar school closures due to COVID-19, and the deliv-
ery of the transfer items shifted to digital delivery (instead of in-
person classroom assignment). This required some adaptation on 
the researchers’ part, changing item format slightly to fit the digital 
platform requirements, and becoming more dependent on parents 
to check in with the platform and accept the assignment. Given the 
adaptive nature of the system and that students used the system at 
home at varying time intervals, students varied greatly in the 
amount of usage and they demonstrated mastery at different rates. 
With in-person classroom instruction resuming, this element could 
be better controlled for in the future with structured in-class play-
time and assignments (as originally planned). 

8. CONCLUSION AND FUTURE WORK 
With AISs – and specifically game-based AIS, designed for en-
gagement as well as rigor – transfer of learning is a critical element 
in which there’s a large opportunity for new and impactful research. 
For education to succeed, learning must apply well beyond the 
learning context – far transfer and PFL are required. Instances of 
far transfer and PFL, while rare, have been documented and pre-
dicted [3, 5]. This work suggests that game-based event stream data 
can be used to reliably predict robust learning of this nature, build-
ing on prior work in other contexts [3, 5, 42].  

In terms of future research and development, the insights gained in 
this study show promising patterns around learning transfer based 
on MMA usage. In subsequent studies, based on item analysis and 
review of individual student and teacher responses, there is now a 
basis for establishing a more refined, seasoned set of MMA transfer 
items. As a fully developed item bank is set, it can be used in future 
studies to more formally assess item reliability and validity. In turn, 
this can be used for more formal measurement of transfer in the 
context of MMA usage, potentially yielding more prediction models 
across broader contexts (e.g., experimental studies with multiple 
classrooms, districts, and students; [41]). Ideally, MMA could then 
develop a research-informed automated transfer system for the 
classroom, in which students receive transfer and PFL support ma-
terials and assessment items at an individualized pace to help them 

reach far transfer of their playfully-learned math skills. Transfer 
prediction could then be used as a partial substitute for more formal 
assessment of transfer and to support better learning outcomes. 
Given the volume of data generated by MMA, A/B tests can also be 
run to support continuous improvement of the learning experience.  

Results of this particular prediction model suggest areas for future 
research. Based on the role of prior knowledge in transfer and PFL, 
expansion of the system to include higher level math skills may be 
helpful for younger students who are ready for more of a challenge. 
In addition, these results highlight an intriguing relationship be-
tween transfer and activity cancellation. Additional research is 
needed to better understand why activity cancellations have a pos-
itive impact on some students and not for others. Key questions 
might include when is cancellation a meaningless whim, when does 
it reflect deep consideration of the underlying material, and what is 
its relationship to a child’s enjoyment, cognitive engagement with 
math, and ability to retain focus? This is particularly relevant given 
the variance in executive function in very early elementary school 
[6]. Answering this would give designers and researchers more in-
formation about how to interpret cancellation stats to inform design 
and learning outcomes, particularly for these younger students.  

This study provides a first look into the relationship into how MMA 
can support and measure robust learning, yielding promising pat-
terns suggesting that gameplay can empirically support transfer and 
PFL. Findings can help inform future research and development for 
more engaging, effective playful learning in early math education.  
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