Malfunctioning Gene Associated With Lou Gehrig’s Disease Leads to Nerve-Cell Death in Mice

facebook twitter google print email
Media Contact:Karen Kreeger | karen.kreeger@uphs.upenn.edu | 215-349-5658January 4, 2011

PHILADELPHIA – Lou Gehrig’s disease, or amyotrophic lateral sclerosis (ALS), and frontotemporal lobar degeneration (FTLD) are characterized by protein clumps in brain and spinal-cord cells that include an RNA-binding protein called TDP-43. This protein is the major building block of the lesions formed by these clumps.

In a study published in the Journal of Clinical Investigation, a team led by Virginia M.-Y. Lee, PhD, director of Penn’s Center for Neurodegenerative Disease Research, describes the first direct evidence of how mutated TDP-43 can cause neurons to die. Although normally found in the nucleus where it regulates gene expression, TDP-43 was first discovered in 2006 to be the major disease protein in ALS and FTLD by the Penn team led by Lee and John Q. Trojanowski, MD, PhD, director of the Institute on Aging at Penn. This discovery has transformed research on ALS and FTLD by linking them to the same disease protein.

Click here to view the full release.

Multimedia