Penn Study Identifies Molecular Guardian of Cell's RNA

facebook twitter google print email
Media Contact:Karen Kreeger | karen.kreeger@uphs.upenn.edu | 215-349-5658October 22, 2010

When most genes are transcribed, the nascent RNAs they produce are not quite ready to be translated into proteins - they have to be processed first. One of those processes is called splicing, a mechanism by which non-coding gene sequences are removed and the remaining protein-coding sequences are joined together to form a final, mature messenger RNA (mRNA), which contains the recipe for making a protein.

For years, researchers have understood the roles played by the molecular machines that carry out the splicing process. But, as it turns out, one of those familiar components plays a new, and altogether unexpected role.

As senior author Gideon Dreyfuss, PhD, the Isaac Norris Professor of Biochemistry and Biophysics at the University of Pennsylvania School of Medicine and colleagues report in Nature, one of the splicing machinery's components called U1 has a second, equally important role in gene expression: To enable gene sequences to be read out into their RNA transcripts in their entirety, rather than have that process prematurely stopped. Dreyfuss is also a Howard Hughes Medical Institute Investigator.

Click here to view the full release.

Multimedia