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ABSTRACT 
This study examines how accurately individual student differ-
ences in learning can be predicted from prior student learning 
activities. Bayesian Knowledge Tracing (BKT) predicts learner 
performance well and has often been employed to implement 
cognitive mastery. Standard BKT individualizes parameter esti-
mates for knowledge components, but not for learners. Studies 
have shown that individualizing parameters for learners improves 
the quality of BKT fits and can lead to very different (and poten-
tially better) practice recommendations. These studies typically 
derive best-fitting individualized learner parameters from learner 
performance in existing data logs, making the methods difficult to 
deploy in actual tutor use. In this work, we examine how well 
BKT parameters in a tutor lesson can be individualized based on 
learners’ prior performance in reading instructional text, taking a 
pretest, and completing an earlier tutor lesson. We find that best-
fitting individual difference estimates do not directly transfer well 
from one tutor lesson to another, but that predictive models incor-
porating variables extracted from prior reading, pretest and tutor 
activities perform well, when compared to a standard BKT model 
and a model with best-fitting individualized parameter estimates. 
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1. INTRODUCTION 
Intelligent tutoring systems have employed learner models to 
improve learning outcomes for over two decades. Learner models 
have been used both to individualize curriculum sequencing [1, 2, 
3] and/or to individualize hint messages [4, 5]. Each of the five 
successful modeling frameworks cited here employs a Bayesian 
method to infer learner knowledge from learner response accura-
cy, and Bayesian modeling systems have been shown to accurate-
ly predict students’ tutor and/or posttest performance [1, 3, 6, 7]. 

Bayesian models generally individualize model parameters for 
different reasoning skills, or knowledge components, (KCs), but 
not for different students. Several studies have shown that indi-
vidualizing parameters for students, as well as for KCs, improves 
the quality of the models [1, 8, 9, 10]. 

These modeling studies of individual differences among students 
have employed data sets consisting of tens of KCs, or even many 

hundreds of KCs [10]. These studies have analyzed students’ 
performance on a set of KCs retroactively, deriving the individu-
alized student parameters for that set of KCs from existing tutor 
log files. These methods successfully address the research ques-
tion, but are complicated to use for actual student modeling in 
ITSs, since the concurrent estimation and use of individualized 
parameters within a tutor lesson can be quite challenging at best.  

In this paper we examine whether parameter estimates can be 
individualized for students prior to embarking on a tutor module, 
based on student performance in earlier activities. First, we exam-
ine whether parameter estimates can be individualized based on 
performance in two activities that naturally precede tutor use: 
reading on-line instructional text and taking a conceptual 
knowledge pretest.  

Second, we examine whether, once a student begins using an ITS, 
parameter estimates in a prior tutor module can be individualized 
based on student performance in a prior module. In particular, 
how well do individualized student parameters directly transfer 
from one tutor module to the next? If not well, what measures of 
student performance in a tutor lesson can be used to predict indi-
vidual student parameters in a following lesson? 

We explore this issue in the Bayesian Knowledge Tracing model-
ing framework [1] and in a unit of the Genetics Cognitive Tutor 
[6]. In the following sections we describe Knowledge Tracing, the 
on-line student activities, and the predictors derived from stu-
dents’ reading, pretest, and prior tutor activities. Finally, we report 
our success in using these predictors to model individual differ-
ences in student learning and performance in the tutor.  

2. MODELING FRAMEWORK 
Bayesian Knowledge Tracing (BKT) [1] employs a two-state Bayesian 
learning model for each knowledge component (KC) in a tutor curricu-
lum: at any time a student either has learned or not learned a given 
KC. BKT employs four parameters to estimate the probability that 
a student has learned each KC: 

     pL0 initial knowledge the probability  a student  has learned 
how to apply a KC prior to the first opportunity to apply 
 it in the ITS 

     pT  learning rate the  probability  a  student  learns  a KC at 
 each opportunity to apply it 

     pG guessing the probability a student will guess correctly if  
the KC is not learned 

     pS slips the probability a student will make an error when 
the KC has been learned 

Cognitive Tutors employ BKT to implement cognitive mastery, in 
which the curriculum is individualized to afford each student just 
the number of practice opportunities needed to enable the student 
to “master” each of the KCs. Mastery is generally operationalized 
as a 0.95 probability that the student has learned the KC. 
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2.1 Individual Differences 
Knowledge Tracing generally employs best-fitting estimates of 
each of the four parameters for each KC but not for individual 
students. In this work, we incorporate individual differences 
among students into the model in the form of individual difference 
weights. Following Corbett & Anderson [1], four best-fitting 
weights are estimated for each student, one weight for each of the 
four parameter types, wL0, wT, wG, wS. In estimating and employ-
ing these individual difference weights (IDWs), each of the four 
probability estimates for each rule is converted to odds form (p/(1-
p)), multiplied by the corresponding student-specific weight and 
the resulting odds form is converted back to a probability. Let i 
represent the parameter type, (i.e., pL0, pT, pG, pS), r represent 
the reasoning rule (KC) and s the student, then the individually 
weighted parameter for each rule and student, pirs, is given by the 
equation: 

pirs = pir * wis / (pir * wis + (1 - pir))     (1) 

where pir is a best fitting parameter estimate for the rule across all 
students and wis is the corresponding individual difference weight 
for the students. 

2.2 Related Work 
Several previous studies have employed tutor log files to retroac-
tively examine the impact of individualizing BKT parameters for 
students. Corbett and Anderson [1] individualized all four BKT 
parameters for students, as described in Section 2.2, and found 
that the resulting model predicted individual differences in post-
test performance better than the standard, non-individualized BKT 
model. Lee & Brunskill [8] employed a different method to derive 
four individual difference parameters and examined the impact on 
another property of the models – the number of practice opportu-
nities that would be required to reach mastery. They found that the 
individualized model recommended substantially greater practice 
for some students and substantially less practice for others than 
the standard, non-individualized model. Two other studies fo-
cused on individualizing just the learning parameters, pL0 and pT 
and obtained somewhat different results. Pardos and Heffer-
nan [9], individualized the initial knowledge parameter, pL0, 
alone, based on either the student’s first attempt at each KC or on 
all attempts at each KC – and found that either individualized 
method yielded reliably better fits than the standard, non-
individualized BKT model. Finally, Yudelson, Koedinger and 
Gordon [10] individualized both the learning parameters, and 
found that individualizing the learning rate parameter pT yielded 
reliably better fits than the standard, non-individualized BKT 
model. However, unlike Pardos and Heffernan [9], they found that 
individualizing pL0, alone or along with pT, did not reliably im-
prove the goodness of fit. Finally, in an alternative approach to 
modeling student differences, a variety of student modeling 
frameworks grounded in Item-Response Theory have employed a 
single individual difference parameter as a basic component of the 
model [11,12,13].  

All of these studies model student differences with log files after 
the students have completed the tutor activities. In this paper, we 
examine whether individual student differences can be estimated 
before students start using a tutor lesson, based on student per-
formance in prior activities that are natural components of on-line 
learning activities.  

3. GENETICS TUTOR 
This study employed the Genetics Cognitive Tutor [6]. This tutor 
consists of over 25 lessons that support problem solving across a 

wide range of topics in genetics, including Mendelian transmis-
sion, pedigree analysis, gene mapping, population genetics and 
genetic pathways analysis. Various subsets of the modules have 
been piloted at 15 universities and four high schools in the U.S. 

The genetics topic in this study is gene interaction, which exam-
ines how two genes can interact in controlling a single phenotypic 
trait (an observable trait, e.g., hair color). When two genes, each 
with a dominant and recessive allele, control a single trait, e.g., 
bell pepper color, there can be up to four different resulting phe-
notypes (four colors). However, there are many ways the two 
genes can interact that result in only two or three different pheno-
types.  

The study employs two gene interaction lessons, which require 
that students reason about the topic in two different ways. In the 
first, forward reasoning or process modeling lesson, each problem 
provides a description of how two genes interact and students 
determine the phenotype that is associated with each genotype and 
the offspring phenotype rates that will result from various parental 
crosses. In the second, abductive reasoning lesson, students ana-
lyze offspring phenotype rates that result from various parental 
crosses, and reason backwards to infer the genotypes of the par-
ents and the offspring, and ultimately, how the two genotypes 
interact to determine phenotype. 

This study focuses on four on-line activities that students com-
pleted in succession: reading the gene interaction instructional text 
online, taking a gene interaction pretest, and finally using both the 
Genetics Cognitive Tutor Gene Interaction process modeling and 
abductive reasoning modules. 

On-Line Instructional Text. The online instructional text con-
sisted of 23 screens, structured like pages in a book. Students 
could move forward and backward through the text, one screen at 
a time. After a student touched each page at least once, a “done” 
button appeared on the final (23rd) screen and the student could 
then continue reading (e.g., back up to re-read pages), or exit at 
any time.  

Conceptual Knowledge Pretest. Students completed a pretest 
with nine conceptual questions divided into three topics. The first 
three questions focused on general knowledge of basic Mendelian 
transmission with 2 genes, the second three questions focused on 
process modeling, and the last three questions focused on abduc-
tive (backward) reasoning. This was not a problem-solving pre-
test; the last six questions are not similar to the Cognitive Tutor 
problems. Instead, they required students to reason about genetics 
processes and abductive reasoning more abstractly. 

Genetics Cognitive Tutor: Gene Interaction Process Modeling. 
This lesson consisted of 5 problems. In each problem, students 
were given a description of how two genes interact to determine a 
phenotype, e.g., bell pepper color. Students (a) mapped the de-
scription onto one of seven gene interaction templates with 3 
menus, (b) identified the phenotypes of the four true-breeding 
genotypes. (c) modeled the offspring genotypes and phenotypes 
resulting from two different parental crosses, and finally (e) sum-
marized the phenotypes associated with all possible individual 
genotypes and how the phenotypes arise. 

Genetics Cognitive Tutor: Gene Interaction Abductive Rea-
soning. This lesson consisted of 6 problems. Each problem, dis-
played the offspring phenotype rates that result from 3 parental 
crosses. Students inferred the genotypes of the parents and off-
spring in each of the three crosses and how the two genes interact 
to determine genotypes 
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The Cognitive Model for the Two Lessons. There was an aver-
age of 45 steps in each of the process modeling problems and 25 
steps in each of the abduction problems. Some of the KCs govern-
ing the steps in a problem were unique to the problem, while 
others were applicable in multiple problems. In this analysis we 
excluded KCs that occurred only once or twice across the prob-
lems in a lesson, leaving 31 KCs in the process modeling lesson 
and 22 KCs in the abduction lesson. 

3.1 Predictor Variables 
In this study, we examine the effectiveness of four categories of 
student performance variables in predicting Lesson 2 (abduction) 
IDWs: (1) reading the instructional text, (2) pretest performance, 
(3) Lesson 1 IDWs and (4) features of student performance in 
completing Lesson 1. 

In a prior paper [14] we derived 12 predictor variables for the 
students in this in this study, based on their gene interaction read-
ing and pretest activities – 6 reading variables and 6 pretest varia-
bles, as described in this section. In that paper these 12 measures 
were used to predict best fitting IDWs for tutor Lesson 1 (process 
modeling), as summarized in section 3.2 below. 

3.1.1 Predictors Derived from Instructional Text and 
Reading Performance 
We derived two types of measures of student reading perfor-
mance: reading time and revisiting pages in the text. Between 
these two measures we derived a total of 6 predictor variables, as 
follows.  

Reading Time (4 variables): No prior ITS research employs 
reading rates to individualize parameters in a learning environ-
ment, but there is substantial evidence that reading time may 
prove sensitive to individual differences in comprehension diffi-
culty. Harvey and Anderson [15] showed that reading times for 
on-line declarative instruction in the ACT Programming Tutor are 
sensitive to differences in processing time necessary to encode 
familiar versus novel material. More generally, an extensive re-
search literature demonstrates that, reading time is sensitive to 
relative comprehension difficulty [16].  

We performed a factor analysis on log reading times for the 23 
individual pages to reduce the number of predictors. The factor 
analysis yielded a total of four factors (see RTF1, RTF2, RTF3, 
RTF4 in Table 1), which align with subtopics in the text, as sum-
marized in Table 1.  

Text Pages Revisited (2 variables): Students can read through 
the declarative instruction as they would pages in a book. Some 
students may choose to strictly read forward through the text, 
while others may choose to revisit earlier pages in the text. We 
calculated two measures of student behavior in revisiting text 
pages: the number of pages re-read and number of intervening 
pages traversed in re-reading text pages. 

3.1.2 Predictors Derived from a Conceptual 
Knowledge Pretest 
Some prior projects have employed pretest accuracy to initialize 
ITS student models [3, 17]. We derived three types of measures of 
student pretest performance: accuracy, answer changes and time 
on task. Between these three measures, we derived a total of 6 
predictor variables, as follows. 

Pretest Accuracy (3 variables): We calculated students’ average 
pretest accuracy on each of the three types of pretest questions, 
general knowledge, process modeling and abductive reasoning. 

Pretest Answer Changes (2 variables): We calculated the num-
ber of times students changed their answers in the pretest from a 
correct initial answer to an incorrect final answer, or vice versa. 

Time on Task (1 variable): Finally we calculated students’ total 
time to complete the pretest. 

3.1.3 Lesson 1 Individual Difference Weights 
In the prior study [14] we derived four best-fitting individual 
difference weights in the first tutor lesson for each of the students 
in this study. In this study we examine both how well these Les-
son 1 IDWs directly apply to Lesson 2, and whether they can be 
used to improve the predictive model for Lesson 2 IDWs. 

3.1.4 Lesson 1 Performance Features 
Finally, we derived six features of student performance in solving 
the Lesson 1 tutor problems. 

Error Rate: Corbett and Anderson [1] found that students’ raw 
error rate within a tutor lesson is strongly correlated with the 
logarithm of students’ IDWs for that lesson. In this study we 
calculated students’ raw error rate in completing the Lesson 1 
problems and examine whether Lesson 1 error rate predicts Les-
son 2 IDWs. 

Average response time: We calculated students’ average re-
sponse time for their first problem-solving action at each oppor-
tunity to apply one of the 22 KCs in tutor Lesson 2. 

3.1.4.1 Performance Features that Predict Transfer 
and Preparation for Future Learning 
Predicting individual differences in students’ initial knowledge, 
pL0, in a tutor lesson from their performance in a prior tutor lesson 
is closely related to examining the direct transfer of knowledge 
from the first lesson to the second lesson. Similarly, predicting 
individual differences in students’ learning rate, pT, in a lesson 
from their performance in a prior tutor lesson is closely related to 
examining students’ preparation for future learning [18] after 
completing the first lesson. 

Prior research [19] has identified features of students’ perfor-
mance in a Genetics Cognitive Tutor lesson that predict transfer 
and preparation for future learning, which are both manifestations 
of deep or “robust” student understanding [20]. Conversely, fea-
tures that predict shallow learning have also been identified [21]. 
In this study we examine four performance features that correlate 
with at least two of these three constructs. 

Help Avoidance: The proportion of problem-solving steps in 
which the probability that the student knows the relevant KC is 
low and the  first action is an error instead of a hint request.  

Bug Message Long Pause: The proportion of a student’s actions 
in which a bug message (error messages given when the student’s 
behavior indicates a known misconception) is followed by a long 
pause before a subsequent action. 

Hint Long Pause: The proportion of a student’s actions in which 
a hint request is followed by a long pause before the next action. 

Hint Correct Long Pause: The proportion of a student’s actions 
in which a hint request is followed by a correct action and then a 
long pause before the next action. 

3.2 Prior Gene Interaction Lesson 1 Results 
Eagle, et al, [14] examined the feasibility of setting individual 
difference weights for the first lesson in this tutor curriculum 
sequence, before students begin work in the lesson. That study 
derived best-fitting standard BKT parameters for each of the 31 
KCs in the first gene interaction lesson, as described in Section 2 
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above, calculated best-fitting IDWs for each of the students, as 
described in Section 2.1, then examined how well each student’s 
best-fitting IDWs could be predicted from the 12 reading and 
pretest variables described in sections 3.1.1 and 3.1.2.  

The BKT model with best-fitting IDWs (FIDW-31) improved the 
goodness of fit of the standard non-individualized BKT model by 
8.7%, reducing the RMSE from 0.306 to 0.279. The BKT model 
with predicted IDWs (PIDW-31) was about 40% as successful as 
the best-fitting model. It improved the goodness of fit of the 
standard non-individualized BKT model by 3.6%, reducing 
RMSE from 0.306 to 0.295. 

As Koedinger, et al [22] observed, even small differences in mod-
el fits can have large effects on the amount of recommended work 
assigned to the student. To compare the practical impact of the 
individualized best-fitting FIDW-31 and predicted PIDW-31 
models for Lesson 1, we calculated the number of practice oppor-
tunities that would be needed for students to reach mastery under 
the standard non-individualized BKT model (SBKT), and under 
the FIDW-31 and PIDW-31 models – that is the number of oppor-
tunities that would be required for pL (the probability the students 
has learned a KC) to reach the mastery criterion (0.95). While 
students completed a fixed curriculum in this study, most students 
had in fact reached the mastery criterion for most of the KCs. 

Under the FIDW-31 individualized model, 56 students required 
less practice to reach mastery than under the SBKT non-
individualized model and these students required 17 fewer oppor-
tunities on average. Under the FIDW-31 model, 27 students need-
ed more practice than under the SBKT model to reach mastery. 
These students required an average of 27 fewer opportunities. 

There was substantial, but not perfect agreement between the 
predicted PIDW-31 and best-fitting FIDW-31 models on the 
amount of practice individual students needed to achieve mastery. 
The PIDW-31 model recommended less practice then the SBKT 
model for 54 students, vs. 56 for FIDW-31, and the two models 
agreed on 46 of these students. The PIDW-31 model recommend-
ed less practice to reach mastery for 27 students, and the two 
models agreed on 19 of these students. However, the PIDW-31 
only recommended 11 fewer opportunities for the first group (vs. 
17 for the FIDW-31 model) and only 14 more opportunities for 
the latter group (vs. 27 for the PIDW-31 model). 

Given this moderate level of success in predicting IDWs from 
prior activities before students embark on the first tutor lesson, in 
the current study we examine two questions. (1) Should IDWs be 
estimated separately for successive lessons in a tutor curriculum? 
(2) Can we predict IDWs in the second lesson more accurately if 
we employ predictor variables from student performance in the 
first tutor lesson, as well as from reading and pretest activities? 

4. METHODS AND MATERIALS 
The data analyzed in this study come from 83 CMU undergradu-
ates enrolled in either genetics or introductory biology courses 
who were recruited to participate in this study for pay. Students 
participated in two 2.5-hour sessions on consecutive days in a 
campus computer lab. In this study, the first session focused on 
gene interaction and students read the on-line gene interaction 
instructional text, took the on-line pretest, and used the gene inter-
action process modeling tutor module and the abductive reasoning 
tutor module as the first four activities in this session. The study 
focuses on modeling the 83 students’ first actions on 10,309 prob-
lem-solving steps in the abduction module.  

4.1 Fitting Procedures 
We first found best-fitting group parameter estimates for each of 
the 4 parameters (pL0, pT,  pG, pS) in the standard BKT model for 
each of the 22 KCs in Lesson 2, with nonlinear optimization. The 
objective function takes the observed opportunities for a single 
skill and a set of group parameters as input and returns the nega-
tive log-likelihood (-LogLik). Optimization ultimately returns the 
set of group parameters that best fit the skill. Both pG and pS 
were bounded to be less than 0.5, as in [23] to avoid paradoxical 
results that arise when these performance parameters exceed 0.5 
(e.g., a student with a higher probability of knowing a KC is less 
likely to apply it correctly.) 

Second, we re-fit the lesson 2 tutor data with an individualized 
BKT model: We obtained four best-fitting Individual Difference 
Weights (IDWs) for each of the 83 students, one weight for each 
of the four parameter types, wL0, wT, wG, wS. As described in 
Section 2.1 equation 1, each student’s four weights are mapped 
across the best-fitting group learning and performance parameter 
estimates for each of the 22 KCs in the lesson to individualize 
these parameter estimates. The objective function takes the fixed 
group parameters, the observed opportunities for a student, and a 
set of IDWs (wL0, wT, wG, wS) and returns the -LogLik. Optimi-
zation ultimately returns the set of IDWs that maximize the fit. 

Table 1. 22 Predictor variables employed in this study. 

Reading Predictors (from Eagle, et al [14]) 

1. RTF1   Reading: Time for a 5-page intro with familiar content 
                  on basic Mendelian genetics 
2. RTF2   Reading: Time for 6 pages with charts of various ways  
                  2 genes can interact 
3. RTF3   Reading: Time for 3 pages on parental crosses with  
                  offspring genotypes & traits 
4. RTF4   Reading: Time for 2 pages with full-page diagrams of 
                  dominant & recessive alleles 
5. RRNP   Reading: Total number of previous pages re-read 
6. RRTD   Reading: Total distance traversed (intervening pages)  
                    in re-reading text pages 

Pretest Predictors (from Eagle, et al [14]) 
1. PACC1  Pretest: % Correct for 3 general knowledge questions 
2. PACC2  Pretest: % Correct for 3 process modeling questions 
3. PACC3  Pretest: % Correct for 3 abductive reasoning questions 
4. PCCI     Pretest: Number of answers initially correct changed 
                   to incorrect 
5. PCIC   Pretest: Number of answers initially incorrect changed  
                  to correct 
6. Ptime    Pretest: Total time to complete the pretest 

Tutor Lesson 1 Individual Difference Weights 
1. L1wL0     Lesson 1 Initial Learning IDWs 
2. L1wT     Lesson 1 Learning Rate IDWs 
3. L1wG     Lesson 1 Guessing IDWs 
4. L1wS      Lesson 1 Slip IDWs 

Tutor Lesson 1 Predictors 
1. TErr     Lesson 1 proportion of errors 
2. TTime     Lesson 1 average response time 
3. HELPA   Not requesting help on poorly learned skills 
4. BugLP     Bug message followed by a long pause 
5. HNLP      Hint message followed by a long pause 
6. HNLPC   Hint message followed by a correct action then a  
                     long pause 
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Third, we derived 6 features from student performance in Lesson 
1, as described in section 3.1.4. Along with the 12 reading and 
pretest features and 4 best-fitting individual difference weights 
derived in [14], this yields a total set of 22 predictor variables, 
displayed in Table 1. 

Fourth, we employed these variables to independently predict the 
four Lesson 2 IDWs: wL0, wT, wG, wS. We generated three pre-
dictions for each of the IDWs with successively larger subsets of 
features: (1) the 12 reading and pretest features; (2) the 12 reading 
and pretest features and 4 Lesson 1 IDWs; (3) the 12 reading and 
pretest features, the 4 Lesson 1 IDWs, and the 6 Lesson 1 perfor-
mance features.Since we are predicting multiplicative weights, we 
fit a transformation of the weights w/(1+w). This transformation 
has the property that the neutral weight 1.0 (which does not modi-
fy the corresponding best-fitting group parameter), is the midpoint 
of the transformed scale.  

4.2 Model and Feature Selection 
In order to reduce the number of features, and to compare to the 
previous work in [14] we used Least Angle Regression (LAR) 
[24] a variant of Lasso.  For each of the four Lesson 2 IDWs we 
use LAR to select the best 12 predictors (out of 22.) Lasso per-
forms both variable selection and regularization, and restricts the 
size of the coefficients making some of the values be zero (not 
included in the model.)  

We then built a robust regression model with the 12 predictors for 
each of the IDWs. Robust regression is less sensitive to outliers, 
variable normality, and other violations of standard linear regres-
sion assumptions [25]. 

Finally, we employed the various sets of predictors to calculate 5 
new IDW BKT models, yielding a total of six BKT model vari-
ants displayed in Table 2. Analysis work was performed using R 
[26], Optimx [27], rlm [28], and lars [24]. 

Table 2. Six Lesson 2 BKT models calculated in this analysis 

1. SBKT: Standard BKT non-individualized model with best-
fitting group parameter estimates. 

2. FIDW-22 Individualized BKT model with Fitted Individual-
ized Difference Weights from Lesson 2 

3. FIDW-31: Individualized BKT model with Fitted Individual-
ized Difference Weights from Lesson 1 

4. PIDW-RP: Individualized BKT model with predicted IDWs 
from reading and pretest features. 

5. PIDW-RPW: Individualized BKT model with IDWs predicted 
from 12 reading and pretest features and 4 Lesson 1 IDWs 

6. PIDW-RPWF: Individualized BKT model with IDWs pre-
dicted from 12 reading and pretest features, 4 Lesson 1 IDWs 
and 6 Lesson 1 performance features. 

5. RESULTS 
This section examines three main questions: 

• How well do best-fitting IDWs transfer from one tutor lesson to 
a following tutor lesson? 

• Do features of reading and pretest performance still predict best-
fitting IDWs in a tutor lesson following an intervening tutor les-
son? 

• Do performance features from a prior tutor lesson further im-
prove predicted IDWs in a subsequent tutor lesson? 

5.1 Best-Fitting Models and Generalizability 
of Individual Difference Weights 
Table 3 displays the overall fit to student performance in tutor 
Lesson 2 of three best-fitting BKT models. Column 2 displays 
root mean squared error (RMSE) and column 3 displays accuracy 
(the probability a model correctly predicts whether a student re-
sponse will be correct or incorrect, with a 0.5 threshold on pre-
dicted accuracy.) The first row in the table displays the standard 
BKT model (SBKT) with no individualization for students as a 
baseline. 
Table 3. Goodness of fit of 3 models for Lesson 2 tutor data: The 
standard BKT model & 2 BKT models with lesson-specific IDWs 

Model  RMSE  Accuracy 

SBKT 22 KCs  0.413  0.749 

Lesson 2 FIDW‐22 KCs  0.385  0.784 

Lesson 1 FIDW‐31 KCs  0.415  0.756 

The last two rows in Table 3 display the goodness of fit of two 
BKT models that incorporate best-fitting IDWs. The second row 
displays the BKT model with IDWs trained on the 22 KCs in 
Lesson 2 (FIDW-22). As can be seen, this model improves the 
goodness of fit compared to the SBKT model, reducing RMSE by 
about 6.8% (RMSE 0.385 vs. 0.413) and increasing accuracy by 
about 4.7% (Accuracy 0.784 vs. 0.749). 

The last row examines the generalizability of IDWs across the two 
tutor lessons. This row displays the BKT model for lesson 2 with 
the IDWs that were previously trained on the 31 IDWs in lesson 1 
in [14]. As can be seen, the IDWs trained on lesson 1 KCs do not 
transfer well to lesson 2. The overall RMSE for this individual-
ized model is slightly worse than for the non-individualized 
SBKT model, while the Accuracy is somewhat better. Even for 
these two highly related tutor lessons, which require students to 
reason differently about the same genetics knowledge, simply 
propagating IDWs from one lesson to another is not successful. 

5.2 Predicting Lesson 2 IDWs 
In this section we evaluate three methods for predicting Lesson 2 
IDWs from student performance with three activities that precede 
Lesson 2: reading instructional text, a pretest, and tutor Lesson 1. 
We employ the FIDW-22 model with best-fitting lesson-specific 
IDWs as our gold standard for evaluating model fits with predict-
ed IDWs. Table 4 displays the overall goodness of fit of these 
three models. (The first two rows display the fit of the standard 
non-individualized SBKT model, and best fitting BKT model with 
lesson-specific IDWS, FIDW-22, for comparison.) 

Table 4. Goodness of fit of 5 models for lesson 2 tutor data: The 
standard BKT model, 4 BKT models with lesson-specific IDWs. 

Model  RMSE  Accuracy 

Lesson 2 SBKT  0.413  0.749 

Lesson 2 FIDW‐22  0.385  0.784 

Lesson 2 PIDW‐RP  0.399  0.764 

Lesson 2 PIDW‐RPW  0.397  0.769 

Lesson 2 PIDW‐RPWF   0.396  0.769 
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5.2.1 Predicting Lesson 2 IDWs with Reading and 
Pretest Variables 
We first employed the six reading measures and six pretest 
measures derived previously [14] to predict Lesson-2 specific 
IDWs, as described in Section 4.1. The overall goodness of fit for 
this model PIDW-RP is displayed in row 3 of Table 4. This model 
with predicted Lesson 2 IDWs is 50% as successful as the best-
fitting FIDW-22 model in reducing RMSE: The new model re-
duces RMSE by 3.4% compared to the non-individualized SBKT 
model, 0.399 vs. 0.413, vs. a 6.8% improvement for the best-
fitting FIDW-22 model). The FIDW model is also about 2.0% 
more accurate than the SBKT model, 0.764 vs. 0.749, (vs. a 4.7% 
improvement for the best-fitting FIDW-22 model). 

Table 5. Differences in practice needed to reach mastery.  

Model # Stus.  
needing  

less 

# Fewer  
Opps. 

Needed 

# Stus.  
needing  

more 

# More  
Opps. 

Needed 

FIDW-22 49 16.69 33 12.21 

PIDW-RP 57 

(40) 

4.73 

 

22 

(14) 

7.21 

 

PIDW-RPW 54 
(38) 

4.35 
 

23 
(15) 

8.28 
 

PIDW-RPWF 56 
(40) 

4.65 
 

29 
(16) 

8.96 
 

As discussed earlier, small differences in model fits can have 
large effects on the amount of recommended work assigned to the 
student [22]. To compare the practical impact of the best-fitting 
FIDW-22 model and the three predicted IDWs, we calculated the 
number of practice opportunities that were necessary for students 
to reach mastery under each of the models - that is, the number of 
opportunities required for pL (the probability the student has 
learned a rule) to reach 0.95. While students completed a fixed 
curriculum in this lesson, this analysis is possible because most 
students reached mastery for most of the KCS in the available 
number of opportunities under all three models. Across all stu-
dents and skills, students mastered 75% of the skills under the 
SBKT model, 77% under the FIDW model, and 77% under the 
PIDW-RP model. If a student did not reach mastery on a KC 
under one model, we conservatively estimated that the student 
would reach mastery on the next opportunity. This means that the 
number of More Opps is a lower bound and interpreted as the 
minimum number of opportunities the model would recommend. 

The practice recommendations are displayed in Table 5. The 
second column displays how many students would need less prac-
tice under the individualized model than under the non-
individualized SBKT model. The third column displays how 
many fewer practice opportunities these students would need on 
average. The fourth column displays how many students would 
need more practice under the individualized model than under the 
non-individualized SBKT model. The fifth column displays how 
many more opportunities would be needed on average.  

Both the best-fitting FIDW-22 model in row 2 and the predicted 
PIDW-RP model in row 3 substantially modify the amount of 
practice students need to reach mastery compared to the SBKT 
model. Under the best-fitting FIDW model, 49 students needed 
less practice to master all the KCs than under the non-
individualized SBKT model and on average these students re-

quired 16.69 fewer practice opportunities to reach mastery under 
FIDW than under SBKT. Under the predicted PIDW-RP model, 
57 students needed an average of 4.73 fewer opportunities to 
master all the KCS than under the SBKT model.  The two indi-
vidualized model agree on a set of 40 students who need fewer 
practice opportunities to reach mastery, but again the FIDW mod-
el requires less practice (16.69 opportunities) of these students 
than the PIDW-RP model (4.73 opportunities). 

Under the best-fitting FIDW model, 33 students needed more 
practice to master all the KCs than under the non-individualized 
SBKT model and on average these students required 12.21 fewer 
practice opportunities to reach mastery under FIDW than under 
SBKT. Under the predicted PIDW-RP model, 22 students needed 
an average of 7.21 fewer opportunities to master all the KCS than 
under the SBKT model.  The two individualized model agree on a 
set of 14 students who need fewer practice opportunities to reach 
mastery, but again the FIDW model requires less practice (18.38 
opportunities) of these students than the PIDW-RP model (7.58 
opportunities).  

Overall, the FIDW and PIDW-RP models were in 65% agreement 
on which students needed fewer or more opportunities to master 
all the KCs than under the SBKT model, but the new predicted 
PIDW-RP model is not realizing all the learning efficiency gains 
identified by the best-fitting FIDW model. 

5.2.1.1 Models with Reading and Pretest Variables. 
Table 6 displays the coefficients for each of the 12 predictors in 
the regression models for each of the four Lesson 2 IDWs. The 
predictors that enter reliably into the robust regression models are 
highlighted with asterisks.  

Both reading time variables and pretest variables continue to be 
reliable predictors of individual difference weights in gene inter-
action tutor lesson 2, even after students have completed an inter-
vening tutor lesson. All four reading time factors each reliably 
predicted at least one of the four individual differences weights. 
Both variables that measure the extent to which students revisit 
text pages also marginally predict wG. 

Not surprisingly, pretest accuracy variables reliably entered into 
the four IDW models. Differences in student accuracy on general 
knowledge (PACC1) and on process-modeling (PACC2) each 
reliably predict three of the four IDWs. Surprisingly, student 
accuracy on abductive reasoning questions (PACC3), the type of 
reasoning employed in this second tutor lesson did not reliably 
predict any lesson 2 IDWs. Pretest reasoning about process mod-
eling is a better predictor of students acquiring abductive reason-
ing skills than a pretest measure of abductive reasoning. Finally, 
the number of answer changes students made and total time did 
not reliably predict any of the four IDWs. 

5.2.2 Predicting Lesson 2 IDWs from Student Read-
ing, Pretests and Lesson 1 IDWs 
While the best-fitting Lesson 1 IDWs fit the Lesson 2 data poorly, 
our next predictive model includes them along with the 12 reading 
and pretest variables. The overall goodness of fit for this model 
PIDW-RPW is displayed in row 4 of Table 4. This PIDW-RPW 
model improves upon the predictive accuracy of the earlier 
PIDW-RP model.  The PIDW-RPW model is 57% as successful 
as the best-fitting FIDW-22 model both in reducing RMSE (vs. 
50% for the earlier PIDW-RP model) and in increasing Accuracy 
(vs. 43% for the earlier PIDW-RP model). The new model reduc-
es RMSE by 3.9% compared to the non-individualized SBKT 
model, (0.397 vs. 0.413) and increases accuracy by 2.7% com-
pared to the SBKT model (0.769 vs. 0.749). 
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The practice recommendations for this PIDW-RPW model are 
displayed in row 3 of Table 5. Like the earlier individualized BKT 
fits, this fit substantially modifies the amount of practice students 
need to reach mastery compared to the SBKT model. While this 
new PIDW-RPW predictive model fits the tutor data better than 
the earlier PIDW-RP model, the practice recommendations of the 
two predictive models are very similar. Overall, the best-fitting 
FIDW and PIDW-RPW models were in 64% agreement on which 
students needed fewer or more opportunities to master all the KCs 
than under the non-individualized SBKT model, but the new 
predicted PIDW-RP model is not realizing all the learning effi-
ciency gains identified by the best-fitting FIDW model. 

Table 6. Coefficient Summary Table (*<0.10, **<0.05, ***<0.01) 

  wL0 wT wG wS 

(Intercept) 0.501*** 0.559*** 0.511*** 0.509*** 

RTF1 -0.027 -0.047 -0.013 0.037*** 

RTF2 -0.016 0.076** -0.005 -0.048*** 

RTF3 -0.052** -0.025 0.023 -0.017 

RTF4 0.04* -0.017 0.03 -0.013 

RRTD -0.021 0.072 -0.105* -0.025 

RRNP 0.032 -0.088 0.115* 0.039 

PACC1 0.06** 0.012 0.074** -0.054*** 

PACC2 0.093*** 0.084** 0.051 -0.046*** 

PACC3 0.017 -0.015 -0.002 0.005 

PCCI -0.001 -0.039 -0.046 0.006 

PCIC -0.032 0.022 -0.005 0.003 

Ptime -0.012 0.001 -0.008 0.021 

RMSE 0.186 0.217 0.233 0.109 

5.2.2.1 The Predictive Models with Reading and Pre-
test Variables and Lesson 1 IDWs. 
Table 7 displays the coefficients for each of the 16 predictors in 
the regression models for each of the four Lesson 2 IDWs. As 
described in Section 4.1, Lasso was used to identify the best 12 
predictors for each of the four IDWs. The predictors that enter 
reliably into the four robust regression models are highlighted 
with asterisks. All four Lesson 1 IDWs enter into at least two of 
the models. Each of the two learning weights, L1wL0, and L1wT 
reliably predicts the corresponding weight in Lesson 2, but the 
two Lesson 1 performance weights do not reliably predict the 
performance weights in Lesson 2. The pattern of reading predictor 
variables that reliably predict each of the four weights is very 
similar between the first and second predictive models. But with 
the inclusion of the Lesson 1 IDWs, the first two pretest variables 
no longer enter reliably into the predictive models for the two 
learning weights, wL0, and wT, nor into the guessing weight, wG, 
although they continue to predict the slip weight, wG, reliably. 
Thus, overall, information on individual differences in students’ 
Lesson 1 learning and performance largely replaces pretest as-
sessments of student knowledge in predicting Lesson 2 IDWs. 

5.2.3 Predicting Lesson 2 IDWs from Reading, Pre-
tests, Lesson 1 IDWs, and performance features 
Our final model examines whether predictive model accuracy is 
further improved by including the six features of student perfor-
mance in Lesson 1, along with the reading and pretest features and 
Lesson 1 IDWs. The overall goodness of fit for this model PIDW-

RPWF is displayed in row 5 of Table 4. This PIDW-RPWF does 
not markedly improve the overall goodness of fit, compared to the 
prior PIDW-RPW model. This PIDW-RPWF is 60% as successful 
as the best-fitting FIDW-22 model in reducing RMSE (vs. 57% 
for the earlier PIDW-RP model) and 57% as successful in increas-
ing Accuracy (vs. 57% for the earlier PIDW-RP model). The new 
model reduces RMSE by 4.1% compared to the SBKT model, 
(0.396 vs. 0.413) and increases accuracy by 2.7% compared to the 
SBKT model (0.769 vs. 0.749). 

Table 7. Coefficient Summary Table (*< 0.10, ** < 0.05, ***<0.01) 

 wL0 wT wG wS 

(Intercept) 0.497*** 0.558*** 0.51*** 0.509*** 

RTF1 -0.035* -0.036  0.021 

RTF2 -0.02 0.052*  -0.043*** 

RTF3 -0.049**  0.009  

RTF4 0.029  0.021  

RRTD  0.075 -0.1*  

RRNP 0.011 -0.088 0.092* 0.019 

PACC1  0.008 0.045 -0.038** 

PACC2 0.029 0.041 0.036 -0.048** 

PACC3 0.002 -0.025 -0.024 0.022 

PCCI -0.007 -0.023 -0.04 0 

PCIC -0.022   0 

Ptime  -0.021  0.024* 

L1wL0 0.075***  0.021  

L1wT  0.074** 0.083** -0.035** 

L1wG 0.012 0.08** 0.013 0.021 

L1wS -0.106*** 0.014 -0.005 0.028 

RMSE 0.153 0.205 0.222 0.100 

The practice recommendations for this PIDW-RPWF model are 
displayed in row 4 of Table 5. Like the earlier individualized BKT 
fits, this model again substantially modifies the amount of practice 
students need to reach mastery compared to the SBKT but, again, 
the practice recommendations for the FIDW-RPWF model are 
similar to the two prior predictive models. Overall, the FIDW and 
PIDW-RP models were in 67% agreement on which students 
needed fewer or more opportunities to master all the KCs than 
under the SBKT model, but the new predicted PIDW-RP model is 
not realizing all the learning efficiency gains identified by the 
best-fitting FIDW model. 

5.2.3.1 The Models with Reading, Pretest Variables, 
and Lesson 1 IDWs and performance features. 
Table 8 displays the coefficients for each of the 22 predictors in 
the regression models for each of the four Lesson 2 IDWs. As 
described in Section 4.1, Lasso was used to identify the best 12 
predictors for each of the four IDWs. The predictors that enter 
reliably into the four robust regression models are highlighted 
with asterisks. As can be seen, among the 22 predictors, only help 
avoidance did not enter into any of the four predictive IDW mod-
els, although another 8 predictors were not even marginally signif-
icant in any of the four models. With the introduction of both four 
lesson 1 IDW weights and 6 lesson 1 performance features as 
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predictive variables, five of the six reading time variables still 
reliably predict at least one of the four lesson 2 IDWs. However, 
only two of the six pretest variables enter even marginally into 
predicting a single lesson 2 IDW. Each of the lesson 1 IDWs 
reliably predicts a single lesson 2 IDW, but lesson 1 L1wT no 
longer reliably predicts three of the four lesson 2 IDWs. Among 
the six Lesson 1 performance variables, raw error rate and mean 
response time did not enter reliably into any of the four IDW 
models. Long pauses after bugs (and help avoidance) also did not 
reliably enter into any of the models. Each of the hint response-
related variables entered at least marginally into predicting two of 
the four lesson 2 IDWs, so student responses to hints in lesson 1 
provide information about individual differences in lesson 2 learn-
ing and performance over and above measures of student reading 
and pretest performance and students’ lesson 1 IDWs. 

Table 8. Coefficient Summary Table (* < 0.10, ** < 0.05, **<0.01) 

 wL0 wT wG wS 

(Intercept) 0.496*** 0.564*** 0.509*** 0.508*** 

RTF1 -0.026 -0.031 0.018 0.015 

RTF2 -0.022 0.034  -0.035** 

RTF3 -0.042**  0.017  

RTF4 0.032*  0.018  

RRTD   -0.117**  

RRNP  -0.022 0.11**  

PACC1   0.03 -0.033* 

PACC2 0.024 0.024 0.027 -0.041** 

PACC3  -0.046   

PCCI   -0.047  

PCIC -0.023    

Ptime    0.019 

L1wL0 0.064**  -0.004  

L1wT  0.035 0.088** -0.028 

L1wG 0.011 0.069**  0.023 

L1wS -0.07**   0.022 

TErr -0.042 -0.059 -0.011 0.005 

TTime  -0.04  0.01 

HELPA     

BugLP -0.018 0.015   

HNLP  0.056* -0.077** 0.005 

HNLPC -0.033* -0.058**  0.006 

RMSE 0.146 0.198 0.214 0.101 

6. CONCLUSIONS 
We have examined four methods of incorporating individual 
student differences into a traditional Bayesian Knowledge Tracing 
model in an intelligent tutor lesson based on student performance 
in earlier on-line activities. The simplest method, of directly em-
ploying best-fitting individual difference weights (IDWs) from the 
preceding tutor lesson on a closely related topic, was unsuccess-
ful. The fit of this individualized model was no better overall than 
the standard non-individualized BKT model.  

The other three methods employed measures of student perfor-
mance in reading instructional text, taking a pretest, and complet-
ing the prior tutor lesson to predict individual difference weights 
in the following lesson. We found that the predictive model, 
which only employs measures of students’ performance in reading 
an instructional text and in taking a pretest, was quite successful. 
The goodness of fit of this predictive model falls midway between 
the non-individualized standard BKT model and the model with 
actual best fitting IDWs. The individualized practice recommen-
dations for this predictive model are similar to the practice rec-
ommendations for the model with best fitting IDWs, , although 
this predictive model does not identify all the opportunities to 
decrease the amount of practice for some students, nor the need to 
increase the amount practice for other students, that are identified 
in the best-fitting model. A second predictive model which incor-
porates these reading and pretest variables along with the four 
individual weights from the prior lesson appreciably improves the 
goodness of fit. However, a third predictive model which includes 
all of these predictor variables and another six measures of student 
performance in the prior tutor lesson did not appreciably improve 
the goodness of fit of the second predictive model. 

An important conclusion of this study is that student performance 
in reading on-line instructional text is a useful predictor of learn-
ing and performance in an intelligent tutor. In the second model, 
five of six reading variables entered at least marginally into the 
prediction of at least one IDW, even though students had com-
pleted an intervening tutor lesson and the students’ IDWs from the 
prior lesson were incorporated into the predictive models. Not 
surprisingly, in the first model, several conceptual pretest varia-
bles also reliably predicted individual differences in learning and 
performance in the second lesson. However, when IDWs from the 
first lesson are incorporated into the second model, pretest 
measures become much less important in predicting IDWs. A 
final intriguing conclusion is that in the third model, students’ 
responses to hint messages in the first lesson were a reliable pre-
dictor of individual differences in learning and performance in the 
second lesson. 

Predicting individual student differences in a tutor lesson from 
prior activities is important since incorporating individual differ-
ences into a lesson is easier if they can be assigned before students 
starting working with the tutor. We anticipate that the quality of 
predicted individual differences will further increase with addi-
tional research. And, while the lesson 1 IDWs and performance 
features are specific to an ITS environment, we believe that read-
ing data, as well as pretest data, could be used to predict individu-
al difference parameters in other types of learning environments. 
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